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Chapter 1

Calculus TE - Problem Solving

This Calculus Problem Solving FlexBook is one of seven Teacher’s Edition FlexBooks that
accompany the CK-12 Foundation’s Calculus Student Edition.

To receive information regarding upcoming FlexBooks or to receive the available Assessment
and Solution Key FlexBooks for this program please write to us at teacher-requests@ck12.org.

Introduction

Calculus is often a major departure point in a student’s math career. Applied problems from
physical situations is now the norm instead of the exception. Furthermore, the strategies
that a student would use, for instance, finding the inverse of a matrix are not always going to
help in topics like integration and infinite series. Therefore it is essential that the instructor
builds in opportunities for students to learn and practice problem solving strategies to ensure
student success and confidence when learning the concepts of calculus.

There are 2 major problem solving paths in mathematics: procedural and, for lack of a
better term, creative. Procedural or algorithmic problem solving is the more prevalent, and
more familiar, form to teachers and students of math. Going back to the problem mentioned
above, finding an inverse matrix, one can apply a procedure to achieve the result. The
algorithm may look something like:

1. Set up an augmented matrix with an identity matrix of the same size on the right.
2. Multiply row 1 with a constant to produce a 1 at entry 1, 1
3. Add a factor of row 1 to row 2 to produce a 0 at entry 2, 1
4. etc.

This would continue until the left side of the augmented matrix becomes an identity matrix,
which produces the inverse matrix on the right side. If one can follow the steps individually,
then one can solve this problem.
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An added level of complexity occurs when a student has a set of algorithms to solve a problem,
but must find clues, to choose the correct method. An example might be solving for the
missing variable in a second degree polynomial. Direct computation, factoring, completing
the square, solving by radicals and even guess and check may all be successful strategies,
often with one choice being the most direct route. Being able to find clues is an experiential
process, and therefore this added level is sometimes difficult for students to master as there
is a high need for guided practice and personal success before students have command of
these tools.

On the far end of the spectrum is what I call creative problem solving. These are challenging
problems that may or may not have an algorithmic procedure available, and often give few
clues for students to latch onto. A problem like

∫
sin(101x) sin99(x)dx (a problem from a

MIT integration bee) will require use of many tools and clues to find the solution method,
or methods.

The problems in this guide are meant to provide enrichment for students to develop good
problem solving skills not only for the problems in the section, but also to provide the
framework for solving problems later in the text.

Writing in Mathematics

Writing in all subject areas is important, and while high school mathematics sometimes
ignores the duty of writing, it is increasingly becoming an expectation of math students of
all levels to express their thought process and reasoning in concise prose. Furthermore, all
advanced mathematics requires solutions and conclusions to be presented in such a manner.
It is for these reasons both the NCTM standards in the Problem Solving and Communication
strands, and the California Math standards have writing required.

Teaching students how to write in math class can be a battle. It is sometimes unlikely
students come into the class with experience with writing in previous math classes, therefore
there will be the need to not only properly scaffold the necessary skills, but also to fight a
little bit of the expectation “This is math, why are we writing?” It is useful to have clear
expectations, regularly and consistently give the opportunity for writing, and give good
critical feedback on student work.

Here are some general rules for mathematical writing. First, writing should be more than
showing work. The temptation may be to simply narrate the steps needed to reach the same
conclusion, and while some of this narrative may be part of a mathematical paper, it is
insufficient on it’s own. More critical than writing explanations of computations is guiding
the reader through the writers though process and ideas. Therefore the reader can not only
follow the work, but has an understanding of what is going on, but why those methods
were chosen. Second, writing a technical paper with symbols and math expressions does
not excuse the writer from the rules of grammar. Good writing has good grammar, and
I recommend against the occasional habit of ignoring grammar and only grading technical
content. Furthermore, there is also a grammar of mathematics that allows expressions to be
implemented into text seamlessly. Complete math-sentences involve a comparative operator
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with two expressions, like clauses, on either side. The comparative operator can be an equals
sign, greater than, less than, set element of, and so on. Expressions without a comparison
to a concision should not be without text explaining what the expression is there for. It is
bad form to start sentences with math expressions, but it acceptable to end a sentence with
them, and should include a period. With all these rules, when it doubt: read the sentences
out loud. More often than not, this will expose bad style immediately.

Setting up Computations

Often times papers will need to include a series of computations. There is a good way,
but many less than perfectly clear methods. A couple of common errors: 3x + 4 = 1 −
6x = 3 = −9x = −1

3
= x. I have seen students mistake the symbol for “equality” with

“therefore” or “giving”. Another less than clear method may be placing all work in line, such
as: 3x + 4 = 1 − 6x → 3 = −9x → −1

3
= x. This is a better choice, but still not as clear as:

3x + 4 = 1 − 6x

3 = −9x

−1

3
= x

Notice how math computations are usually centered. If it is anything less than perfectly
clear, (which depends on the audience which the paper is intended for) explanations of
computations should follow each line in text.

3x + 4 = 1 − 6x

Getting the variables both to the right by subtracting 3x, and the numbers to the left by
subtracting 1 from both sides yields

3 = −9x

Divide both sides by −9 to get an answer of

−1

3
= x

It is considered bad form to use the “two-column” method that is sometimes employed in
teaching proof-writing in geometry classes.
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Organization of Math Papers

Most math papers have a standard arrangement: Introduction, solution, interpretation/conclusion.
The introduction should include a statement of the problem in the authors own words. It
is useful at this time to interpret the significance or importance of the question if it applies.
Also, it helps the paper to foreshadow the solution method used in the paper.

The solution can include the final “answer” either at the start of at the end. Sometimes it is
clearer to present the answer and then present the method and reasoning after, sometimes
it is clearer to follow the exact thought process, arriving at the answer at the end. The
interpretation or conclusion will be included if there is some inference to be made about
the question that required the answer. In social science and other applied questions the
conclusion is often more important than the solution.

Formatting

Typesetting mathematics can be challenging for students, but also provides great opportuni-
ties to teach some technological tools in the classroom. Like in other classes, the preference
will always be to have the paper typed, and it should be depending on resources available to
students. The challenge is how to put all of those math expressions in there. There are a few
acceptable options. First, it is always acceptable to type a paper in a word processor, leaving
space for math, pictures and graphs, and to draw them in neatly by hand after printing.
Better is to use the built in equation editor in modern word processing applications. All
the major programs have the option to insert mathematical expressions. The process, and
the syntax required, can be accessed through the program’s built in Help documentation.
Some schools will own licenses to mathematics or scientific software like Scientific Notebook,
Maple, MATLAB or Mathematica. While many of these are designed first for their ability
to do computation and visualization, they have the capability to typeset some very nice
looking math. The finest option, although the hardest to learn, is to use a TEX or LATEX
typesetting front-end. A front-end will take your writing and commands (TEX, and to a
lesser extent LATEX can look more like a programming language with it’s commands) and
set them in beautifully formatted documents. The learning curve is long, but this is what
scientific papers are expected to be presented in at the university level. Also, it’s free and
can be used on 99% of all computer systems ever made. More information can be found
from the TEX user group at http://tug.org.

How to Get the Students Started

A key to getting comfortable in writing math papers is getting used to metacognitively
investigate solution methods and have other people reading about that process. Start with
some problems that the students have some confidence with, but be careful not to make
them too easy. Sometimes it is more challenging to write a good explanation of a problem
where the solution appears to be obvious. Have students regularly take a problem, write
an introduction and a clear solution. In small groups students should read their work to
their peers. This acts as both a way to understand what is clearer as an audience, and gives
the reader an enforced check on the quality of their work. Regular practice on “everyday”
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problems will equip students with the skills and confidence to tackle larger problems and
papers later in the class.

1.1 Functions, Limits, and Continuity

Equations and Graphs
Much of single variable calculus centers around the graphical representation of functions.
Students have been graphing functions, and working with graphs, for some years, but many
will not understand that a graph is a visual representation of all solutions to an equation.
If students can be brought to understand this key idea, many topics later on will become
easier.

One of the first things to work on with students is the idea of substitution. For purposes of
this problem, let’s look at the equation y = 5x5 − 10x4 − 4x2 + 8x Some common questions
that can be asked are:

• What are the x−intercepts?
• What is the y−intercept?
• What is the y value when x = 1?
• When is the y value equal to −5?

The easiest way to solve any of these questions is to stress that the equation is the rule that
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connects the two variables, and that substituting a value in for one of the variables allows
the other variable to be solved. This is especially straightforward for the third question,
What is the y value when x = 1? By directly substituting y = 5(1)5 − 10(1)4 − 4(1)2 + 8(1)
and evaluating we see that y = −1.

A little bit of translation is needed for the first two questions. Students need to understand
not only what an intercept is, but also the other language used by different teachers and
text books. Usually the y−intercept is pretty standard, sometimes being referred to as the
vertical intercept. The x−intercept, however, sometimes goes by the name of horizontal
intercepts, roots or zeros. The last name is probably the most useful in this case, as we are
saying that a value is zero. Often students get tripped up on which variable to set to zero
in these cases. The y−intercept is found when x is equal to zero, not the variable listed in
the name. Again, solving for the y−intercept is the easier of the two, as substituting zero in
for x yields y = 0.

Working from a given y value adds an additional layer of complexity, as the student then
needs to use additional methods to solve for x. A tool that I will be employing frequently
checking down a list of options of increasing difficulty/decreasing accuracy. This one is from
my Algebra I class:

• Can I solve directly using opposite operations? No. Method fails when variables have
different exponents.

• Can I solve using a formula? No. There is no formula for 5th degree polynomials. (not
strictly true, but the formula is not one I would expect students to know)

• Can I factor? Yes. Because it is equal to zero, and the polynomial factors, this is a
valid solution method.

• Can I use guess and check or use a computer/calculator? This always works, but
is sometimes not allowed in the case of using computer help, or can be tedious and
inaccurate in the case of guess and check.

So if the students can discover that after an x is factored out of each term 0 = x(5x4−10x3−
4x + 8) the fourth degree polynomial can be factored. The major clue, in this case, is that
5 ∗ 2 = 10 and 4 ∗ 2 = 8 so the factored form is: 0 = x(5x3 − 4)(x − 2) and each factor can
individually be set equal to zero and the above process repeated for each individual equation,
all of which can be solved directly.

The last question is similar, but since y = −5 instead of 0, the polynomial can no longer be
set equal to zero and then factored. This is a problem I would send straight to the graphing
calculator or computer solver to get those solutions. On the graphing calculator there are
two methods that work, both of which require an extra step as most calculators do not have
a solver built-in. The first option is to graph the polynomial in the y1 slot and then graph
the constant function y = −5 in the y2 position. After graphing, there is an intersection
[INTERSECT] option under the [CALC] menu. Make sure the command is run for each
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point of intersection. A second method is to set the equation equal to zero and use the
zero/root option under [CALC].

Relations and Functions
While most of this lesson focuses on information, the problem solving skills for finding domain
restrictions will be applicable to future lessons on limits and differentiability. Let’s look at
a couple of functions that sometimes cause some unique issues with domain and range.

Find the domain and range of: h(x) = 4−x2

x2−x

In many cases when a question is asking you to find the domain for a given function, they
are really asking For what values of x does is this equation undefined? There are a few places
to normally look in these situations:

• Rational functions are undefined when the denominator is equal to zero
• Even powered radicals are undefined when the inside is negative
• Special meaning attached to problems may restrict the domain, for example “negative
time” may not make sense to include.

In the case of our first problem, it is a rational function so we only need to consider the
denominator and set it equal to zero: 0 = x2 + x By factoring, we find x = 0,−1, so the
domain is necessarily restricted by eliminating those two items. As to the range, this is
a good opportunity to bring in some of the concepts about limits as we can examine the
function at the numbers very close to our two undefined numbers to see that the range is
infinite in both the positive and negative direction.

Find the domain and range of: p(x) =
√
sin(x)

A strong understanding of trig functions pays huge dividends in calculus and this is a good
example. We know, from the list above, that we are looking for when sin(x) is negative. A
student with a less than perfect grasp on the trig functions may find this difficult. A common
way to find when a function will return negative values is to first find when the function is
equal to zero to create intervals to test, and then test a point in each interval to see if it
is negative or positive. If a student uses sin−1(0) to determine the intervals, they will get
only a single answer, where a student with a better understanding will know that there will
be more than one intersection with the x−axis, and therefore many intervals where sin(x)
is negative. On a single period, sin(x) is negative on the interval (π, 2π). Students should
also realize that (3π, 4π), (5π, 6π), . . . and (−π, 0), (−3π,−2π), . . . are intervals that can’t be
included in the domain. Since there are infinitely many intervals, a challenge for the student
is to figure out a way to write the domain. I recommend this as a short group activity to
develop a plan, and then present to the class. Students will likely try to use descriptive
language, which is ok, but try to steer the groups to develop a description or rule that can
be written down. The usual way of expressing such a domain is: D = [(2k−1)π, 2kπ], k ∈ Z
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This is also a common trick for sequences that use just even, or just odd numbers, so it
is worth the time to ensure students understand this notation. The range is again easy if
students understand the trig functions, as sin(x) will reach a maximum of 1, and in this case
a minimum of 0 with the domain restrictions, and the root does nothing to change those
boundaries.

Find the domain and range of: r(x) = tan(x)

I’ve included this one as it’s a little bit deceiving. It doesn’t appear to have any restrictions
at first, but a rule that has served me well throughout calculus is to always change all trig
functions to sin and cos immediately. Now it becomes r(x) = sin(x)

cos(x)
and it is clear that we

should treat it as a rational function and eliminate all instances when cos(x) = 0. The range
is infinite in each direction.

Models and Data

This is one of the finest topics to spend some time with, as much of the work done in the real
world centers around modeling functions to observed data. Also, the process of selecting
the correct model by finding the clues given, and the applying the correct method is an
extremely valuable skill, and one that will be used frequently throughout calculus.

Knowing the general shapes of a few graphs is important for students in the future. If they
have not yet, they should have memorized the general shape of:

• Linear functions
• Even degree polynomials (like quadratics)
• Odd degree polynomials (like cubics)
• Exponential functions
• Sine

Other common graphs, such as n − th root functions, logarithmic functions and cosine are
simple transformations of the graphs listed above, and do not need to be memorized explicitly
on their own.

The text focuses on identifying the model from trends or graphs but there is also a way to
do it analytically. The further away from the model, the harder this gets, but can often yield
clues. The data needs to be arranged with the input values in order, and equally spaced.
The relationships between the output values will lend clues to the type of function. The key
process is taking differences between each set of output values. The following is a table with
a number of functions from a single set of input values.
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x f(x) g(x) h(x) q(x) r(x)

− 3 − 9 10 − 26 .0156 1

− 2 − 7 5 − 7 .0625 0

− 1 − 5 2 0 .25 − 1

0 − 3 1 1 1 0

1 − 1 2 2 4 1

2 1 5 9 16 0

3 3 10 28 64 − 1

4 5 17 65 256 0

5 7 26 126 1024 1

If you take the each output value for function f(x) and subtract the one previous, you get
a constant answer,2. If all these “first differences” are equal, then the function is a linear
function.

For function g(x) the sequence of differences are: −5,−3,−1, 1, 3, 5, 7. The next step is to
look at the differences of this sequence, which are all equal to 2. If the “second differences”
are equal, then the function is a quadratic.

Start h(x) the same way, finding the first sequence of differences to be: 19, 7, 1, 1, 7, 19, 37, 61.
The second sequence of differences is: −12,−6, 0, 6, 12, 18, 24 which makes the “third differ-
ences” all equal at 6. This is a cubic function, and the pattern holds for all higher degree
polynomials.

No sequence of differences will ever start getting close to being equal, so we can rule this
out as a polynomial. The next technique to attempt is to inspect the ratios of the outputs.
In this case, if we divide each entry by its previous, all the ratios equal 4. If the ratios are
equal, the function is an exponential function.

The toughest is the trig functions, which is what r(x) is. Sometimes you can only determine
it by process of elimination, or have enough entries to identify that the outputs are periodic,
such as r(x) in this case.

Once a model is selected a set of x − y pairs are chosen to solve for missing coefficients as
a system of equations. As many pairs are needed as missing elements. For example, to find
the equation for h(x), we might set up a system such as:
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−7 = a(−2)3 + b(−2)2 + c(−2) + d

0 = a(−1)3 + b(−1)2 + c(−1) + d

1 = a(0)3 + b(0)2 + c(0) + d

2 = a(1)3 + b(1)2 + c(1) + d

From here there is the option to use matrices, or elimination/substitution to find the coeffi-
cients.

Sometimes observed data is not going to yield exact answers, so a best approximation will
need to be made. Working with a few problems with exact outputs will help to give the
experience to sense what is the correct model choice.

The Calculus
In this conceptual treatment of calculus centers around the understanding of small approx-
imations all adding up to an exact answer. As a conceptual lesson, there will not be any
specific problems to solve here, but many can be found in later sections.

A challenge of teaching calculus is where to start. Do you try to make sure students have a
conceptual foundation for what they are doing computationally later, or do you dive in into
the computation and then fill in the meaning of those computations later? Either method
has it’s faults, as there will need to be some “hand-waving” as some ideas and techniques will
not be filled in until later. Calculus is does two things for the understanding. First, students
begin to understand why the curriculum in Algebra-Geometry-Math Analysis is structured
the way it is: for the application to calculus problems. Second, Calculus makes much more
sense after the entire course is completed. Therefore students will need encouragement and
support over the next lessons which involve many tricky and long problems that have the
potential to frustrate students. Avoid creating a mutiny by giving them the confidence to
“fight” through it for now, as things will start to come together as time goes on.

Limits
A nice way to guide students to understand the nature of limits, as well as introduce some
of the important concepts of calculus is to look at the concept of instantaneous and average
velocity. Students often have an understanding of each of those concepts separately; their
experience of the speedometer in the car, or the radar gun readings for instantaneous velocity,
where most of the problems they have done in math classes all relate to average velocity.

Problem: A cyclist’s position in a 1 kilometer time trial can be modeled by the equation
s(t) = −t3

300
+ 1

2
t2 where s(t) is the meters traveled in time t in seconds. What is the rider’s
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average speed? What is the rider’s speed when they cross the finish line? What is the rider’s
speed at 50 seconds?

For the solution, the problem needs a little bit of working. Students should be familiar with
the fact that the rate is the change in distance over time. A quick note on that. There
are two things worth stressing at this point. A strong tool to use in both math and science
classes is to gather what information of formulae you need to access through the units of the
answer. In this case, speed is given in m/s, so distance and time are needed. The next is
to start understanding the relationship between slope and rates. The rise-over-run mantra
should be followed with “What is the meaning of the rise, and the meaning of the run, in
this case?” For this problem, the vertical axis is position, the horizontal time, so the change
in position over the change in time gives the slope, which is the speed in this case.

Since the students are looking for the rate, and know that they need the distance and the
time. The distance is given, 1km or 1000m, but the time is not. Students will need to find
the time it takes to cover that distance, but ideally, should not need to be told explicitly this
is what they need. Individuals or groups should try to work to discover this on their own.
To find the time, they should go through the checklist to see if they can solve the equation
directly, but with minor exception, polynomials of degree 3 and higher will most easily be
solved by graphing and finding points of intersection, which yields that it takes 56.7 seconds
to travel this distance. The average speed then being 17.6 m/s.

Now for the more important question, which is about the instantaneous speed. As groups,
think-pair-share, or as a class discussion students should be asked to contribute their ideas
as to how to find the answer. Some hints can be given about relating slope to rate, and
what the slope at that point would be. Gropus may also come up with the idea that the
change in time for instantaneous velocity is 0, which can’t be used, due to division by zero,
but this is a valuable observation. Much of calculus is about very good approximations,
so ask students what a better approximation of the instantaneous velocity might be. After
getting contributions, students should begin to see that choosing points that are very close,
infinitely close, together will give the closest answer.

This is a good motivation as to why limits are important. It is valuable in math to look at
very close approximations, and if you are close enough, it is as good, and accepted as, the
exact answer.

Evaluating Limits
The order that the different techniques are presented in is also the algorithm for solving
limits. To put it all in one place:

• Direct substitution. Always try to simply put the number into the expression
• Factor and divide.
• Separate and simplify using properties of limits.
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• Apply special known limits.
• Use an analytical technique, such as the squeeze theorem, or l’Hopitals rule.

Some special known limits include:

lim
x→0

sin(x)

x
= 1 lim

x→0

1 − cos(x)

x
= 0 lim

x→0

1 − cos(x)

x2
=

1

2

Knowing these are helpful, especially as there are often a couple of problems on the AP
examination that are much easier if you know them.

A couple of tough examples:

lim
x→27

x − 27

x
1
3 − 3

Always try to plug in the number, which predictably does not work in this case. Now it’s time
to factor, or use other algebraic methods. Typically, when roots are involved, multiplying
by the conjugate is the first step, in this case multiplying by x + 27 does not get closer to
a simpler expression. The key here, as with all factoring problems, is to try to find the
relationship between numerator and denominator that will allow for the elimination of a
factor. In this case, I notice that each term in the denominator cubed separately becomes
the corresponding term in the numerator, so I will look to factor the numerator as a cubic.
Remembering the form for a difference of cubes: a3 − b3 = (a− b)(a2 + ab+ b2) and thinking
of x − 27 =

(
x

1
3

)3

− 33 results in a factoring and elimination as follows:

lim
x→27

(
x

1
3 − 3

)(
x

2
3 + 3x

1
3 + 9

)
x

1
3 − 3

= lim
x→27

x
2
3 + 3x

1
3 + 9

Which can be evaluated directly as equal to 27.

lim
x→0

sin(5x)

3x

Again, always at least try to plug the number directly in. Further, this is not factorable in
any useful way, although a brief glance as double and half angle rules are useful from time to
time. There is no useful way to separate these out using the limit properties, but it should
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be clear that the next step, using a way to relate to special known limits, is helpful. This
one looks very close to limx→0

sin(x)
x

= 1 and only needs the following algebraic manipulation:

lim
x→0

sin(5x)

3x
× 5

5
= lim

x→0

sin(5x)

5x
× 5

3

To be completely rigorous, a change of variable should be used here, such as 5x = u but it
doesn’t change the problem and most solutions will omit this step, seeing simply that the
limit of the first factor is equal to one, and that the answer is 5 over 3.

Continuity
Continuity is a sticky subject. A concept that is easy to grasp, but putting a rigorous
analytical definition to is trouble. One only needs to look at how the accepted definition
changes from the first time it appears, through analysis and then to advanced topics like
measure theory. It is a useful exercise to ask students to try to come up with a solid definition
of their own.

An important result from continuity is the Intermediate Value Theorem. Students are not
often asked to apply theorems in proofs at this level, but the skill is valuable. Also, there
are sometimes free-response questions on the AP examination that ask for verification of
existence, which is really asking for a slightly lighter version of proof.

The classical application of the Intermediate Value Theorem is the question:

Show that all polynomials of degree 5 have at least one real root. (the more general question
involving polynomials of odd degree is proven the same way, but introduces some difficulty
for students in working with the general form of polynomials. I would not want to risk
confusing students with variable coefficients, subscripts and missing terms in the middle,
especially as it is not essential for the problem at this time.)

This is a nice introduction to analytical proofs. Here is the process for figuring out and
writing this proof:

• Is there a theorem that may be applied?

In this case, yes, and you should probably explicitly state that the Intermediate Value
Theorem should be used.

• How can you meet the conditions between “If” and “Then”?

A difficult part for students in writing what I call “grown-up” proofs is that they feel lost.
The question alone is a little too open-ended to always know how to proceed, so grabbing
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onto necessary conditions for a theorem is a great way to start working with the problem,
even if sometimes it doesn’t work out in the end. In this case, we need continuity and we
will need to show that there is an interval where f(a) < 0 < f(b).

• Are there additional theorems, or pieces of information, needed to get the needed
conclusion?

In this case, no. The intermediate value theorem is about all that is needed. A little bit of
work with limits may also be used.

Proof: With the 5th degree polynomial, p(x) = ax5 + bx4 + cx3 + dx2 + ex + f we can take a
look at two limits: limx→−∞ p(x) and limx→∞ p(x). Since the limits are to infinity, the first
term will dominate the others and we only need to concern ourselves with the sign of that
term. Case 1 : a is positive. This would result in limx→∞ p(x) = −∞ and limx→∞ p(x) = ∞
due to the odd exponent. Since −∞ < 0 < ∞ the intermediate value theorem states that
the polynomial must be equal to zero at some point in the reals. Case 2 : a is negative. In
this case the signs of the above limits both switch, which has no effect on the inequality and
the intermediate value theorem still holds.

Note: I did not establish the fact that all polynomials are continuous. This is true, and is
given as fact in many texts. It is not valuable to stress this point as accessing the other parts
of the intermediate value theorem are more important.

Infinite Limits

A place where students can become confused here is with the difference between an indeter-
minate form of a limit and one that has real meaning. This is especially difficult as infinity
is a concept, not a number, but seem sometimes like it is treated as a number. An example:
limx→∞2x4 − 35x3 Which, if we substitute we get: ∞−∞ which is an indeterminate form.
By factoring out an x3 we get limx→∞x3(2x− 35) = ∞ which is not an indeterminate form.
The difference being that while students will be tempted to say that ∞ − ∞ = 0 no such
assumption can be made. However, there is no circumstance in which ∞×∞ does not go
to infinity. Some of the subtleties can cause confusion.

1.2 Differentiation

Tangent Lines and Rates of Change

Problem: The following set of data points give the population, in Millions at a given year.
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Year 1900 1950 1990 2000 2004 2006 2007 2008

Population 1.48 10.59 29.76 33.87 35.89 36.46 36.55 36.76

What was the average rate of change in the 20th century? What was the rate the population
was increasing at the year 2000? Project the population for the state for the year 2020 and
justify your conclusions.

The focus of this problem is on the decisions made and then writing the justifications for
those decisions. The first question is the only one that has a single correct answer. The
second question has a couple of options. Students could decide to take the two closest point
lower, the 1990 data point, and calculate what is actually the average from 1990 to 2000.
Another, and probably a more justifiable choice, is to use the data point above, as it is closer
to 1990 and therefore probably more accurate. This is really the key, as students should be
working towards an understanding that the closer the points are to each other, the closer
the answer will be to the instantaneous rate. Some students may attempt to find an average
between the two previous options. As long as students can write a justification for their
method, they should be encouraged to find novel solutions.

The last questions leaves the opportunity for the most interpretation. Students should be
encouraged to take most of their reasoning from the data given. It may be tempting to bring
in other experiences, news items, or personal philosophies, and it is up to the instructor how
much to allow, but I would discourage such practices and make the students work strictly
from the data.

The Derivative
There are a variety of standard techniques that are common especially for finding the limits
in the form of the definition of the derivative. This may not be exactly the same list as the
algorithm for general limits, as the denominator will necessarily go to zero.

• Expand and eliminate. Polynomials will often work with this technique. Example:

f(x) = x3 + x + 1

f ′(x) = lim
h→0

((x + h)3 + (x + h) + 1) − (x3 + x + 1)

h

= lim
h→0

(x3 + 3x2h + 3xh2 + h3 + x + h + 1) − (x3 + x + 1)

h

Then distributing the negative and re-ordering for clear cancelations:
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lim
h→0

(x3 − x3 + 3x2h + 3xh2 + h3 + x − x + h + 1 − 1)

h
= lim

h→0

(3x2h + 3xh2 + h3 + h)

h

Then cancel out a factor of h and evaluate the limit:

lim
x→0

3x2 + 3xh + h2 + 1 = 3x2 + 1

Something to caution students about is consistent use of parenthesis. This is especially
critical in making sure the negative gets istributed correctly to cause the proper cancellations.

• Multiply by the conjugate of the numerator. Usually used for radicals. Example:

f(x) = 2 −
√

x − 5

f ′(x) = lim
h→0

2 −
√

(x + h) − 5) −
(
2 −

√
x − 5

)
h

= lim
h→0

(
−
√

(x + 5) − 5
)

+
√

x − 5

h
×

−
√

(x + h) − 5 −
√

x − 5

−
√

(x + h) − 5 −
√

x − 5

= lim
h→0

(x + h − 5) − (x − 5)

h
((
−
√

x − h − 5
)
−
√

x − 5
)

= lim
h→0

h

h
((
−
√

x − h − 5
)
−
√

x − 5
)

= lim
h→0

1

−
√

x − h − 5 −
√

x − 5

= lim
h→0

1

−
√

x − 5 −
√

x − 5

=
−1

2
√

x − 5

Again, keeping a close watch on the negatives is key to getting a correct answer.

• Use identities and rules of trig functions, logarithms and other functions. Example:
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f(x) = cos(3x)

f ′(x) = lim
h→0

cos(3x + 3h) − cos(3x)

h

= lim
h→0

cos(3x) cos(3h) − sin(3x) sin(3h) − cos(3x)

h

= lim
h→0

cos(3x)
cos(3h) − 1

h
− lim

h→0
sin(3x)

sin(3h)

h

= lim
h→0

3 cos(3x)
cos(3h) − 1

3h
− lim

h→0
3 sin(3x)

sin(3h)

3h
= 3 cos(3x)(0) − 3 sin(3x)(1)

= − sin(3x)

Recalling a trig identity and a couple of limits from a previous chapter.

Techniques of Differentiation

There are three rules presented in this chapter are some of the most used throughout a first
year calculus course. It is important then to get lots of practice with selecting and using each
tool. Most are straightforward to implement, but students seem to have the most difficulty
with the quotient rule. A couple of hints for the quotient rule:

• Remember subtraction is not communicative. While the product rule can be used with
the terms in any order, the quotient rule must always be used the same way.

• Be consistent and thorough with parenthesis. Common errors include the incorrect
distribution of the negative stemming from not being clear with groupings.

• Don’t forget about doing algebra correctly. It’s easy for students to get very involved
with applying the power rule inside of the quotient rule and focusing completely on
the tools they are learning, and then incorrectly square the denominator.

• Don’t use it. While sometimes the process requires the use of the chain rule, in a
future section, students tend to make fewer mistakes if they can simplify the function
in advance, or use a negative exponent to make the use of the product rule possible.

Derivatives of Trigonometric Functions

Here is a completely contrived problem, but very nicely illustrates the correlation for the
trig functions.

Problem: A car is on a circular track with a radius of 1km maintaining a perfectly steady
speed of 1km/h.
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1. Plot two graphs. The first showing the vertical displacement away from the center and
the second showing the horizontal displacement from the center, both as a function of
time.

2. Plot two graphs, this time showing the vertical and horizontal velocity. Hint: you may
find it helpful to first plot the “easy” points, the ones on the axis, and the ones half
way along each quadrant. The Pythagorean theorem may come in handy here.

3. Make a prediction about the graph of the vertical and horizontal acceleration against
time and the direction of the acceleration of the car.

This is a challenging question. There are a couple of ways to plot the first two graphs.
One is to use right triangles and the trig functions. This is a little bit circular, of course,
as the graphs are going to be the graphs of sine and cosine respectively. Another, more
intuitive, way to do it is to use the endpoints and the 45◦ and 30 − 60 − 90 right triangles.
That gives 16 points and should result in enough information to make a curve. It’s ok if the
students begin to graph, recognize the function and complete the graph from there. The same
procedures apply for the second question. The big key here is to have the students recognize
another relationship between the trig functions, not only that sine and cosine represent
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the coordinates around the unit circle, but also that there is a natural way to relate the
derivatives of each function. Another benefit, although it may also create a challenge, is
having the students work with a situation where the speed is constant, but the velocity,
being a vectored quantity, is changing.

After working with the velocity in this manner, some students may come to the proper
conclusion about the acceleration, but if not it is not a problem. This is more of the process
of “stretching the mind” and giving students a problem that is maybe one step further then
they are comfortable with and asking them to give their best prediction and justification.
The acceleration vector for the car is always going to be constant, and pointing in towards
the center of the circle. This makes the x and y component vectors the legs of the right
triangle the acceleration vector creates. Another fun question: there is a helium balloon tied
down and floating freely in the car. Which way is the balloon leaning as the car turns left
around the circular track? Answer: the balloon leans to the left. The air pressure will be
greater on the right hand side of the car due to centrifugal forces pushing the balloon to the
area of lesser air pressure on the left.

The Chain Rule
Now that students have most of the tools for differentiation they will use, it’s time to look at
putting many of those techniques together. This can be a daunting task for some students
as it not only means recognizing which tool to use, but what order, and with no directive on
how many times they may need to use it. Let’s look at a rather complicated problem as an
illustration.

f(x) =

√
3x cos(x) − ln(5x)

sin2(4x3)

To find the derivative of this function multiple applications of the chain rule, product rule
and quotient rule. A couple of problem solving hints:

• Work from the “outside in.” Meaning that the grouping functions that are outside get
treated before the functions that are inside.

• For nested rules, let the rule dictate which rule you need to use next. Don’t immediately
go to making a list of all techniques needed. If you are in the middle of using the
quotient rule, and you need a derivative of the top function, then look at what is
needed to take the derivative of the top function.

• Don’t lose your place. Because a rule may get started, and then not finished until
after a number of other rules are applied, don’t lose track of where you are in that
rule. Something that may help is labeling the separate parts, writing their individual
derivatives and then putting it all together in the end.
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I’ll solve this problem showing the maximum amount of work for clarity.

First, since the fraction bar extends the whole way, the quotient rule needs to be applied
first.
p′(x)q(x)−p(x)q′(x)

(q(x))2
, p(x) =

√
3x cos(x) − ln(5x) and q(x) = sin2(4x3)

Now we need to take the derivative of each function individually. Since this is going to be
involved, lets look at p(x) first. It is useful to re-write the function with a fractional exponent
and apply the chain rule:

p(x) = (r(x))
1
2 , p′(x) = 1

2
(r(x))

−1
2r′ (x) where r(x) = 3x cos(x) − ln(5x)

As the chain rule states, we then need the derivative of the inside function, r(x), but it is
important to recognize that the first term is a product of two functions and the second term
is a composition of functions. So applying the product rule for the first term and the chain
rule for the second results in:

r(x) = m(x)n(x) − c(d(x)),m(x) = 3xn(x) = cos(x)c(x) = ln(x)d(x) = 5x

r′(x) = m′(x)n(x) + m(x)n′(x) − c′(d(x))d′(x),m′(x) = 3n′(x) = − sin(x)

c′(x) =
1

x
d′(x) = 5 → r′(x) = 3 cos(x) − 3x sin(x) − 1

5x
× 5

This is the end of the line for the top, now its time to look at q(x).

q(x) = (sin(4x3))2, q(x) = g(h(j(x))),

g(x) = x2h(x) = sin(x)j(x) = 4x3

It may not be clear on first inspection that this is actually a composition of three functions
together. It is this reason why it is often useful to re-write exponents for trig functions
“outside” using parenthesis. Writing it out using the chain rule with function notation:

q′(x) = g′(h(j))h′(j(x))j′(x), g′(x) = 2xh′(x) = cos(x)j(x) = 12x2

q′(x) = 2 sin(4x3) cos(4x3)12x2 = 24x2 sin(4x3) cos(4x3)

Now it’s time to put all of it together. Since there are no more derivatives left to take we
can work from the bottom and fill in the derivatives that are called for in function form.

f ′(x) =

(
1
2
(3 cos(x) − ln(5x))

−1
2

(
3 cos(x) − 3x sin(x) − 1

x

))
sin2(4x3) −

√
3x cos(x) − ln(5x)24x2 sin(4x3) cos(4x3)

sin4(4x3)
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This was primarily an illustrative practice. I do not recommend such an involved problem,
except maybe as a bonus or a special problem, but it does expose either bad habits with
showing and tracking work, as well as the importance of continually letting the rule in use
dictate the next step.

Implicit Differentiation
Implicit differentiation is really a fancy instance of the chain rule. The key to having success
solving more challenging problems that are written implicitly is to follow the clues and
processes set up in previous sections, only remembering the derivative terms that need to be
chained at the end. An example:

ex. y = x4y3 + x3y4

Clearly this equation can’t be solved explicitly, which is always a good thing to check. Now
taking the derivative implicitly is going to require the use of the product rule for the two
terms on the right hand side. Each of these then requires the use of the chain rule as part
of the implicit differentiation.

dy

dx
=

(
4x3dx

dx
y3 + x33y2 dy

dx

)
+

(
3x2dx

dx
y4 + x34y3 dy

dx

)

Note that I included the dx
dx
derivative term. I encourage students to do so, and then cancel

it out later. This provides consistency with applying the chain rule, and avoids the trouble
that can happen when students do not know when they need to “do it” and when they can
“ignore it.” The next step is to cancel out the derivatives that are equal to one, and then
group the terms so we can prepare to factor the derivative term of y with respect to x.

dy

dx
= 4x3y3 + 3x2y4 + 3x3y2 dy

dx
+ 4x3y3 dy

dx

Subtracting to get the derivative term on the same side, then factoring:

dy

dx
− 3x3y2 dy

dx
− 4x3y3 dy

dx
= 4x3y3 + 3x2y4

dy

dx
(1 − 3x3y2 − 4x3y3) = 4x3y3 + 3x2y4

dy

dx
=

4x3y3 + 3x2y4

1 − 3x3y2 − 4x3y3
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It is useful to think of the derivative terms as quasi-variables. They can be added, multi-
plied and factored just like variables. Having this understanding will help with separable
differential equations later on.

Linearization and Newton’s Method

The topics of linear approximations for curves, and then the use of such linear equations
to approximate solutions for difficult equations may be a tough sell in today’s world. The
topics keep on reappearing on standards lists, and occasionally show up on the AP exami-
nation, and this keeps the flame going for these topics. Students, having grown up in an era
with computers and graphing calculators, all with symbolic solvers, often ask “Why?” With
the expectation from the exam writers being that students know it, the answer becomes
“Because.” But this does present an interesting question: If these methods have been made
somewhat obsolete by technology, how do you test mastery?”

With so much of a high school calculus class being driven by the AP examination, it is useful
as a problem solving skill to predict what types of questions can be asked in a reasonable
manner. The format of the test does restrict the type of question heavily, and therefore
keeping in mind what types of questions can be asked may prove helpful. It is not reasonable
to expect students to be able to have mastery of all types of questions, in all situations, in
calculus in only a year. As the focus of a class changes, for instance a high school AP class,
a university level year one class for social science and biology majors, and a year one class
for math, physics and engineering students, one can see how the longer format questions
change.

Specifically for this section, how do obsolete questions get asked? There are two major ways
for these questions to show up. First is to require exact answers with irrational numbers.
Since even in the calculator legal sections the technology is restricted to calculators without
symbolic solving systems, requiring answers in exact form is a way to enforce hand-working
of the problems. The second method is to put the problems in a calculator illegal section
of the test. This places another set of restrictions, as the expectations of what the students
can be asked to do changes when no calculator is allowed.

Therefore, it is valuable to work on problems, especially in this section, with a variety of
calculators allowed, and formats required for answers. Students should be asked to solve
problems with use of a graphing calculator, and without. Also, since many university math
and science departments are not allowing graphing calculators in their lower division classes,
but are requiring a scientific calculator, it may be useful to also practice using a scientific
function calculator. It is also helpful to require students to work problems with exact ir-
rational numbers throughout problems of various kinds, getting used to the sometimes a
variable, sometimes a number treatment of such elements.
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1.3 Applications of Derivatives

Related Rates
The key to being successful in solving related rate problems is proper organization of given
information at the start of the problem. By listing the given rate information, and the
requested rate, labeled with the correct variable and differentials, the required equations will
become clear and the process should be easier. Example:

ex. A spherical balloon is being inflated at a rate of 4πcm3 every second. What is the rate
the surface area of the balloon is increasing after 9 seconds?

First, identify the given and needed information. The rate that is given is a volume over
time change, and the needed information is an area over time change. So:

given: dV

dt
= 4π needed: dA

dt
when t = 9

These differentials indicate that we need the formulae for the volume and surface area of a
sphere:

V =
4

3
πr3 A = 4πr2

We can take the derivatives of these equations to get the needed differentials:

dV

dt
= 4πr2dr

dt

dA

dt
= 8πr

dr

dt

These derivatives tell us we need to things. First, we need the length of the radius of the
sphere at 9 seconds. Also, we need the rate that the radius is increasing at 9 seconds. Since
the rate of volume increase is constant, we can multiply to find the total volume of the sphere
at 9 seconds, 36π cubic centimeters. Substituting into the volume equation, we can solve to
find that the radius is 3 cm at that time. Since we have the change in volume over time, and
the radius, we can use the first function then to find the change in radius over time.

4π = 4π(3)3dr

dt
→ 1

9
=

dr

dt

Substituting the radius and the change in radius over time into the second equations:
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dA

dt
= 8π(3)

(
1

9

)
→ dA

dt
=

8

3
π

Therefore the rate the surface area is changing is 8
3π

cm2 per second.

The key item to notice is that by setting up the rates at the top, the next step was always
dictated by what variables were in use and what needed to be found next.

Extrema and the Mean Value Theorem

A useful principle related to the topics in this section is the racetrack principle:

Suppose that g and h are continuous on [a, b] and differentiable on (a, b), and that g′(x) ≤
h′(x) for a < x < b. If g(a) = h(a), then g(x) ≤ h(x) for a ≤ x ≤ b. If g(b) = h(b), then
g(x) ≥ h(x) for a ≤ x ≤ b.

An interpretation of this, and the origin of the name, is that there are two vehicles on a race
track, and one vehicle, h, is always moving faster. If they start at the same place, then h
will lead the entire time. Alternately if they end up in the same place, this means that g will
have to have been leading the whole time since its speed is slower. This is a handy principle
to prove inequalities for two functions. A common application is: Show that sin(x) ≤ x for
all x ≥ 0.

Since the idea here is to show that one function is greater than the other for the entire
interval the racetrack principle should be helpful. When applying theorae or principles, it is
always important to pay close attention to the conditions. The functions are both continuous
and differentiable on the interval. We now need to decide if we need to show they start at
the same point, or if they end at the same point. There is an intersection at the start of
the interval x = 0, although it is worth noting, that there is nothing that says this is, or
needs to be the only intersection. This lesser requirement is one of the useful aspects of the
racetrack principle. Now differentiating both sides, we do see that cos(x) ≤ 1 which is true.
Therefore our original inequality does hold.

The First Derivative Test

The first derivative tells much about the function. The temptation is for students who are
raised in a graphing calculator environment to rely on the graphing or guess and check
methods to answer questions that could easily be solved by testing using derivatives. Using
a chart is a nice way to organize the information. Example:

Find all increasing and decreasing intervals for the function f(x) = −x3 − 4x2 + 5x − 1
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First thing to do is to take the first derivative and set it equal to zero to find the critical
points.

f ′(x) = −3x2 − 8x + 5 → 0 = −3x2 − 8x + 5

which is not factorable so applying the quadratic formula yields:

x =
8 ±

√
82 − 4(−3)(5)

−6
→ x =

8 ±
√

124

−6
→ x = .52,−3.19

Now set up a table with the critical points with some chosen values between each point:

xvalue − 5 − 3.19 0 .52 1

sign of derivative − 0 + 0 −

After substituting in the values to the derivative function. This means that the intervals
where the function is decreasing is (−∞,−3.19)∪ (.52,∞) and the function is increasing on
the interval (−3.19, .52).

Setting up the table to dictate what values to choose is a key tool. I think of the critical
points as being “partitions” for the real numbers. When the partitions are established then
any values can be chosen inside those intervals. This is really important for some functions
that may not be clear on the calculator, like functions that have critical points well outside
the normal graphing window or functions that have critical points that are very close and
do not appear correctly on a typical graphing window.

The Second Derivative Test
The same tool that is used for finding first derivative information about increasing and
decreasing functions is valuable for finding information about concavity, maxima and minima
and inflection points. Here we’ll look at an application of these techniques. Not only is it
common to have optimization word problems where first and second derivatives will need
to be evaluated, but analytic problems about functions can also be interesting. Example:
Show that x > 2 ln x for all x > 0

Most students, having not seen problems like this before, will need to have a little guidance.
What are you being asked to do with these two functions? Hopefully students will recognize
that they are comparing the two functions, which can be evaluated by looking at the differ-
ence between the two. More accurately stated, is it true x− 2 ln x > 0 for all values of x? A
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good question is now, how do you find what the smallest value of the function f(x) = x− 2
ln x? Smallest value should immediately trigger the “minimize/maximize” alarm that is
growing in students’ minds. Taking the derivative and setting equal to zero:

f ′(x) = 1 − 2

x
→ 0 = 1 − 2

x
→ x = 2

There are a couple of ways to go about the next step, but it is important to understand that
x = 2 is where the minimum exists, not what the minimum is. Substituting back into the
original functions shows:

2 − 2ln(2) = .614

Since the minimum value is greater than zero, then all values must be greater than zero,
proving the original statement.

A couple of nice extensions on this question are: Is ex > x2 for all x > 0? This is actually
just a corollary to the question above, and could be given as the first question asked to a
strong student or class. Another good extension is the question: Is x > 3 ln x for all x > 0?
This turns out to be false, showing how a simple number change can alter the problem.

Limits at Infinity
l’Hopital’s rule is fairly explicit in the instances which it can be used. This can sometimes
cause trouble for students, as it is a really easy technique, and it is easy to try and apply it to
situations when the required conditions are not met. It is such a powerful tool that it is worth
trying to use in many circumstances. Therefore, the approach should be “Can I get this to
fit the necessary conditions?” rather than “Does this meet the necessary conditions?” Here
is an example of the subtle difference: Evaluate limx→0+ x ln x If you substitute zero into the
expression you get 0 times an undefined function. This is not one of the indeterminate forms
that is accepted by l’Hopital’s rule, but if you re-write the limit as:limx→0+

lnx
1
x

now each
function, top and bottom, has a defined right hand limit of ±∞ which is a form accepted
by the rule. Now you can take the derivative of each and evaluate directly:

lim
x→0+

1
x
−1
x2

= lim
x→0+

−x2

x
= lim

x→0+
−x = 0

Another tool is to use the property of logarithms to convert ∞−∞ indeterminate forms to
an expression that fits the rule:
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lim
x→0

xsin x = eln limx→0 xsin x

= elimx→0 sin xlnx = e
limx→0

lnx
1

sin x

Now the limit that is in the exponent is ∞ over ∞ meaning that l’Hopital’s rule can be
applied. Taking the derivative:

e
limx→0

1
xcos x

− sin2 x = elimx→0
− sin2 x
x cos x

Which still results in 0 over 0, so l’Hopital’s rule can be applied again:

elimx→0
−2 sin x cos x
cos x−x sin x

Where the limit can be evaluated as going to 0, which means:

lim
x→0

xsin x = 1

One thing to watch out for is the trap of using l’Hopital’s rule in a circular manner. Some-
times now it may be tempting to find derivatives using the limit definition and applying
l’Hopital’s rule for 0 over 0 cases. This is circular, as a requirement for l’Hopital’s rule is
that the function has a derivative, and it is known. Therefore, l’Hopital’s rule can’t be used
to find a derivative.

Analyzing the Graphs of a Function

Often times tests require an interpretation of the derivatives of a graph without the function
expressed in algebraic form. This can be made easier though using the same techniques used
for algebraic functions, rather than simply try to sketch directly from the graph. Example:
Sketch the first and second derivatives of the following function:
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First up is the first derivative. Just like when given an analytic function, first find the places
where this function is going to have a critical point. There are 3 critical points on this graph,
with the sign of the slope in between each critical point:
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It’s possible at this point to sketch a good approximation, but it could be made better by
looking for the inflection points, which will show up as maxima and minima for the first
derivative:
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Now indicate the concavity and sketch the second derivative:
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The process is exactly the same, and can provide a good way to reinforce the conceptual parts
of the derivative tests, as well as practice sketching graphs based on derivative information.
�

Optimization

A very common question is asking for optimization of a path with different rates. Example:

A pipe needs to be laid from a well to a water treatment plant. The well is located along
the shore of a river 5 km from the treatment plant, which is on the other side of the river.
The river is 250m wide, and the pipe costs $1.50 per meter to lay under ground, but $4 per
meter to lay under the river. What is the cheapest way to lay the pipeline?

The first order of business for optimization problems is to know, and write down, the exact
quantity to optimize. In some cases there will be a number of equations and rates, and it
is easy to lose track of what exactly the question is asking for. In this case, we need to
minimize the cost function for the pipeline. Taking into account the cost rates, the function
is:C = 1.5g + 4w where g is the meters of pipe in the ground and w is the meters of pipe
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under water.

The next thing to do is to draw an accurate diagram with all of the quantities labeled.
Any variables that can be put in the diagram will help. In this case, students should be
encouraged to think of what is likely to happen. If the cost of the pipe was equal, land
or water, then a straight line between the two points is the least pipe, and therefore the
cheapest. It is probably also not likely that the pipe runs perpendicular to the river as this
would be the most amount of pipe possible. The standard diagram for this type of problem
looks something like:

The next step is to try to develop a relationship between our two variables in our cost
function. Put another way, there needs to only be a single variable to take a derivative and
maximize, so one variable needs to be put in terms of the other. The diagram listed gives us
a huge clue, in that the hypotenuse of the right triangle is going to be the distance traveled
across the water, and it can be expressed in terms of the distance traveled along the shore
using the Pythagorean theorem:

w =
√

(5000 − g)2 + 2502

Substituting for the original function and taking the derivative:

C = 1.5g + 4
√

(5000 − g)2 + 2502 → C ′ = 1.5 +
−4(5000 − g)√

(5000 − g)2 + 2502

Now set the derivative equal to zero and solve for g:

0 =
1.5
√

(5000 − g)2 + 2502 − 10000 + 4g√
(5000 − g)2 + 2502
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Which will only be true when the numerator is equal to zero:

0 = 1.5
√

(5000 − g)2 + 2502 − 10000 + 4g → 666.67 − 2.67g =
√

(5000 − g)2 + 2502

444448.89 − 3560.02g + 7.13g2 = 24937500 − 10000g + g2

0 = 24493051.11 − 6439.98g − 6.13g2

Applying the quadratic formula:

g =
6439.98 ±

√
642042955.62

−12.26
→ g = 1541.48 − 259.05

The negative option does not fit with the context of the problem, so we know now that
1541.48m of pipe should be laid along the shore. Substituting back into the relationship
between w and g:

w =
√

(5000 − 1541.48)2 + 2502 → w = 3467.54m

Geometric relationships are the favorites of problem writers.In most circumstances for opti-
mization problems the relationship between variables is going to come from an area, volume,
or distance formula. It is useful then to have a couple of the more common ones memorized.
�

Approximation Errors
While the example in the text shows that using a graphing calculator is the easiest method
to find the interval where the approximation is within a certain error bound, sometimes all
that is asked is to prove the existence of an interval of specific length . The first thing is to
establish a definition for the error. If f(x) has a known value, then the error will be reflected
by:

E(x) = f(x) − (f(c) + f ′(c)(x − c))

The next thing we need to consider is a way to find an error bound, for which we need
a guarantee that the function f is differentiable. We need to use this for the following
derivation. If we distribute the negative and then divide by the difference from x to c:
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E(x)

(x − c)
=

f(x) − f(c) − f ′(c)(x − c)

(x − c)
=

f(x) − f(c)

(x − c)
− f ′(c)

If we now take the limit of each side of the equation as x goes to c, and using the definition
of the derivative:

lim
x→c

E(x)

x − c
= lim

x→c

f(x) − f(c)

x − c
− f ′(c) = f ′(c) − f ′(c) = 0

We can use this to prove the existence of an interval about x = 0 for the function sin(x)
approximated by the linear function x.

sin(x) = x + E(x)with lim
x→c

E(x)

x
= 0

So if we need the error limit to be .1 then the strict definition of the limit states there exists
a δ > 0 such that

∣∣∣E(x)
x

∣∣∣ < .1 for all |x| < δ. Therefore:

|E(x)| < .1|x|

1.4 Integration

Indefinite Integrals
As students begin anti-differentiation they will need to have a certain degree of confidence
with common derivatives. This confidence, developed from substantial practice, will result
in quicker recognition of the “results” from their work in differentiation.

To develop the needed skill for harder problems in the future, it is ok to practice guess and
check type integration before working on the “reverse” power rule or other techniques. While
it takes some time, and sometimes causes frustration, the pay off is getting an understanding
of how to separate and algebraically manipulate functions to make for easier integration when
the problems get complicated. A couple of good problems to try:∫
sin(2x)dx∫
4x3dx∫
ex2dx
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All of these problems are solvable easily with substitution or other techniques to be learned
later. However, the process of trying functions, taking the derivative and seeing how the
outcome turns out will provide a strong foundation for understanding the techniques and
rules later, as well as just being good analytic practice. �

The Initial Value Problem

Here is an example problem with a basic differential equation:

You have two friends who are coming to meet you. One of your friends calls you 1 hour after
he left saying that he is now 320 miles away. Your other friend calls 2 hours after leaving, and
is now 200 miles away. The first person averages 72 mph and the second averages 55mph.
When were they equally distant from you?

A contrived problem, but one that provides some opportunity. There are many ways to
solve this problem, and some students may feel like using calculus is a waste of time, as
they are just learning those skills and others are still more familiar. It is a challenge when
introducing new topics to choose problems that are easy enough to check and feel confident
about, but provide opportunities to practice the new skills. Therefore, don’t discourage or
dismiss students who feel there is a better way, but insist that everyone at least attempts
the problem using calculus.

All we have is two constant functions so we should list them: v1(t) = 72, v2(t) = 55. Astute
observers will see a potential problem with this, however. Since the drivers are coming
towards you, and the standard convention is to put the subject of the problem at the origin,
we should actually be indicating the velocities to be negative. It is up to the instructor
when that should be brought up. We saw earlier that velocity is the derivative of the
position function, so it follows that position is the anti-derivative of the velocity function.
Therefore s1(t) = −72t + c1 and s2(t) = −55t + c2. We do wish to know when the two
position functions are equal, but with the constant term still not determined we can’t do so.
This is where the initial conditions come into play. Substituting in the time and position:
320 = −72(1) + c1 → 392 = c1 and 200 = −55(2) + c2 → 310 = c2. Now the problems can
be set equal: −72t + 392 = −55t + 310 → 82 = 17t → t = 4.8.

It is important also to interpret the answer correctly. It states they will be equidistant
4.8 hours after they left, not after they called. A simple problem, but one to illustrate the
application of differential equations and how initial conditions fit in. �

The Area Problem

The same way that physical problems can illustrate the motivation for the derivative, the
same can be done for integrals. Take the following table of velocities from a car starting
from a full stop:
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Time (sec) 1 2 3 4 5 6 7 8 9

Velocity (ft/s) 21 24 29 32 38 39 37 34 30

How much distance did the car travel in those 9 seconds?

The way this was done in algebra was to find the average velocity and multiply by the time
to get the distance traveled. It should be apparent from the table that the velocity, and
even the change in velocity, is not constant. However, something can be inferred from that
process. If we graph the time on the x axis, and the velocity on the y axis, then the average
velocity times the time is the same as the area of the rectangle made. Ask the students “Is
there a way to get a more accurate approximation?” A diagram or graph may be helpful as
an illustration. It should be clear that treating each second as it’s own problem will result
in a closer answer. One question that needs to be answered is where to take the height of
each rectangle from. If you take the height from the right hand side the answer is:

21(1) + 24(1) + 29(1) + 32(1) + 38(1) + 39(1) + 37(1) + 34(1) + 30(1) = 284

Taking it from the left hand side:

0(1) + 21(1) + 24(1) + 29(1) + 32(1) + 38(1) + 39(1) + 37(1) + 34(1) = 254

Students should be able to safely assume that the correct answer is in between those two.
Furthermore, they should think about the different ways that the answer could be improved.
Students will probably come up with smaller rectangles, more rectangles, average the rect-
angles or end points (essentially the trapezoid rule) and possibly some others, most of which
will be the next steps. �

Definite Integrals

It is up to the instructor at this point whether or not to introduce some summation rules.
This may depend on whether or not the class has had experience with series in previous
classes or if they are comfortable with what has been presented thus far in the class. These
facts do not need to be proven just yet; there will be proofs presented later in the chapter
on series. Some useful facts are:∑n

i=1 c = nc where c is a constant
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n∑
i=1

i =
n(n + 1)

2

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

n∑
i=1

i3 =
n2(n + 1)2

4

n∑
i=1

cf(i) =
n∑

i=1

f(i)
n∑

i=1

p(i) ± q(i) =
n∑

i=1

p(i) ±
n∑

i=1

q(i)

Many definite integrals can be solved using just these rules:

Solve:
1∫
0

5x + 4dx

First, the width of each interval with n subdivisions is 1
n
. This makes each right hand

endpoint 1
n
i. Therefore the definite integral is:

1∫
0

5x + 4dx = lim
n→∞

n∑
i=1

(
5

(
i

n

)
+ 4

)
1

n
= lim

n→∞

n∑
i=1

i5

n2
+

4

n
= lim

n→∞

(
n∑

i=1

5i

n2
+

n∑
i=1

4

n

)

Using the final summation rule above. Now we can pull the constants out front and that
will result in a match for the form listed above for some other summation rules:

lim
n→∞

(
5i

n2

n∑
i=1

i +
n∑

i=1

4

n

)
= lim

n→∞

(
5n(n + 1)

2n2
+ 4

)
= lim

n→∞

(
5n2

2n2
+

5n

2n2
+ 4

)
= lim

n→∞

(
5

2
+

5

2n
+ 4

)

Now it’s possible to evaluate the limit and find that
1∫
0

5x + 5dx = 13
2
. �

Evaluating Definite Integrals
An application of the definite integral, and one that appears regularly on tests, is finding
the average value for a function. Averages are easy to find in linear situations, but not so
easy with curves. The average value of a function can be found by evaluating:
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1

b − a

b∫
a

f(x)dx

which can be thought of as the area under the curve divided by the length of the interval.
This is consistent with how we would find the mean in most other situations. An example
of it’s use:

An endowment account is being continually withdrawn from over the course of a month to
cover day to day expenses. The amount of money in the account can be modeled with the
equation: E = 20 + 980e−.01t where E is the amount in the account, in thousands, and t is
time in days. The bank pays 8.5% interest on the average amount in the account over the
whole 30 day month. How much interest is paid? How much money needs to be placed into
the account at the end of the month to maintain the same balance?

Because this is a curve, it is not possible to subtract the endpoints and divide by the duration.
The function, and the information on the endpoints needs to be place into the average value
formula:

1

30 − 0

30∫
0

20 + 980e−0.1t =
1

30

[
20t − 98000e−.01t

∣∣30
0

]
=

1

30

[(
20(30) − 98000e−.01(30)

)
− 20(0) − 98000e−.01(0))

]
=

1

30
[600 − 726000.18 + 98000)

= 866.66

This give us the average amount of money for the month, so multiplying by .085 states
that 73.66 thousand dollars are paid. This means that after the interest gets paid there is
940.32 thousand in the account. If we substitute 0 into the formula to find out how much
the balance was at the beginning of the month, we find that it needs to be 1000 thousand
dollars, meaning that there needs to be 59.68 thousand replaced to keep the endowment
going.

There is frequently a question regarding average values on the AP examination. Because
of it’s intuitive format, that is, it is close to how we find means, it may not need to be
stressed for memorization, but it will come in handy for both tests, and for applied classes
like physics and economics. �
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Integration by Substitution

This is the beginning of one of the more memorable parts of first year calculus. The set
of techniques for integration need practice, practice and more practice. It is a pattern
recognition game that can only be won through having the experience to match the correct
technique. Furthermore the use of an incorrect technique may not result in an impossible
situation, but will only fail to help get closer to the solution. A simple algebraic example of
what I mean: to solve 3x + 2 = −x − 5, one of the tools that is available to solve algebraic
equation is to square both sides. We can legally do so in this instance, but doing so will only
make the problem worse. This can often happen with either a poor choice of method, or a
poor substitution or other traps that will be considered in the next sections.

If the integral is not straightforward, it is always preferable to start by attempting a sub-
stitution. It is the easiest, and usually going to work most frequently. Another clue is that
substitution is the opposite of the chain rule. If it looks like you are being asked to integrate
a composite function, substitution is probably the key.

Numerical Integration

The trapezoid rule and Simpsons rule provide one of the first peeks into the sort of “brute-
force” solving methods that we rely on now with technology. Getting a close answer with
either method is not challenging, like taking a very involved anti-derivative is challenging,
but can take significantly longer depending on the situation. One of the main tenets of
computer science is that the major advantage of a computer is that it can do the same
procedure, over and over again, without making errors or getting bored. Try to compute
Simpson’s rule by hand with 50 subdivisions and you too will believe that it is an advantage.

So a great problem to tackle at this point is how to program a computer to take a definite
integral with a good deal of precision. I will present the steps in TI-BASIC here, as the
graphing calculator is probably the most likely place for students to be programming in
the math classroom. This is also relatively easy in Python, Java or C if the instructor is
familiar with those languages and has access to computers to use for programming. There are
resources on the web detailing how to write a program for Simpsons rule in those languages.

I will put comments after a “//” to explain what each line is doing. These comments should
not, and really can’t, be entered on the calculator.

Input “FUNCTION?”,Str1 //Getting the function and storing it in a string variable, found
under the VARS menu

Str1 → Y 1 //Placing the function in the Y 1 spot so it can be used as a function
Input “LOWER LIMIT?”,A //The lower limit of integration
Input “UPPER LIMIT?”,B //The upper limit of integration
Input “DIVISIONS?”,N //The number of subdivisions used for the approximation
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While fPart
(

N
2

)
̸= 0 //This checks to see if the number entered for N is even. If not, it

asks for a new number until N is even
Disp “NEED NEW N”
Input “N MUST BE EVEN”,N
End
(B−A)
N→D

//Makes D the length of each subdivision
N → I //I will be used as a counter between 0 and

{1} → L1 //Setting up a list for the coefficients to be multiplied to each endpoint of
the function

While I > 2
augment(L1, {4, 2}) → L1
I − 2 → I
End
augment(L1, {4, 1}) → L1
sum(L1 ∗ seq(Y 1(A + D ∗ I), I, 0, N)) ∗ D

3→S
//This takes the sum of each element of the

sequence of function values from 0 to N , multiplies by the width of each, and puts the
answer into S

Disp Str1 //Displays the function and answer

Disp “IS APPROX”

Disp S

While the use of a list to produce the coefficients is a bit of a novel approach, there are
many other ways to do so, including putting the computation of the approximation inside
of a For or While loop. Be flexible and try to guide students as much as possible in writing
some of their own code. A next step might be to try and write a program for trapezoid
approximation.

1.5 Applications of Integration

Area Between Two Curves
When students first started taking definite integrals the interesting case of what was actually

being represented was illustrated by
3∫

−3

x3dx = 0. This didn’t really make sense because the

normal message is that definite integrals give the area under the curve. Does this mean there
is no area under the curve? Students fast realized that “area under the curve” is more of a
working definition than a rule, and that if they need the total area enclosed, they must be
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aware of if the function is returning negative values. A challenging question is then “What
about the area between two curves when those curves move from negative to positive? How
about when they cross?”

It’s worth looking at a simple case for the first question. Find the area between f(x) =
x3 − 2x2 + 6 and g(x) = x2 − 4x − 8 between −1 and 2.

One curve is completely above the axis, the other is below. Ask the students, What do you
think will happen? To calculate:

2∫
−1

(x3 − 2x2 + 6) − (x−4x − 8)dx =

2∫
−1

x3 − 3x2 + 4x + 14dx

=
1

4
x4 − x3 + 2x2 + 14x

∣∣2
−1

=

(
1

4
(2)4 − (2)3 + 14(2)

)
−
(

1

4
− (−1)4 − (−1)3 + 2(−1)2 + 14(−1)

)
= 36 + 10.75

= 46.75

It would be useful to have some groups working on the problem this way, and other working
on the area under the top curve to the axis, taking the negative area of the curve below the
x axis and then adding the two together. Both should give the same answer, which should
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be consistent with how subtraction works. If both curves are above the axis, then the area of
the lower one is positive, so it needs to be taken out. If the lower curve is below the axis, its
area will be negative, so by subtracting the negative area, the area gets added as it should.
Now, what if we wanted the area between the curves from −2 to −1? Since the negative
situation works so well, it may be tempting to think that this situation is the same.

The problem is that the curve “on top” changes. The general form isn’t really “the area
between two curves” in the same way that the definite integral is not “the area between the
curve and the axis.” The equations will need to be solved to find the point of intersection,
and then two different definite integrals will need to be taken. A computer solver give that
the intersection happens at x = −1.39. Therefore the integrals set up as:

−1.39∫
−2

(x3 − 2x2 + 6) − (x2 − 4x − s − 8)dx +

−1.39∫
−2

(x3 − 2x2 + 6) − (x2 − 4x − s − 8)dx

Volumes
It is valuable have a conceptual understanding of the idea that cross sectional areas added
together allows for the calculation of volumes. There are more methods and formulas than
one can reasonably remember, although some common, or maybe difficult ones, are worth
the time. There are many questions outside of these forms, however, that are favorites on

www.ck12.org 46

http://www.ck12.org


many tests. One that frequently gets chosen is asking for the volume of the solid that has a
specified base, with a particular shape above that base. Here is an example:

What is the volume of the solid whose base is bounded by ex, x = 0, x = 1 and the x−axis,
and whose cross sections are semicircles perpendicular to the x−axis?

A picture is very helpful in organizing all the information. The first order of business is to
figure out what the area is that is needed to iterate to get the volume requested. The half
circles that are shaded darker are the area in question, so they are what we need to figure
out the expression for the area of those shapes next.

Since they are semi-circles, the diameter is going to be the length across the bottom from
the axis to the curve ex, making the radius half of that. So the area of the cross-sections is
1
2
π
(

ex

2

)2. These sections are being iterated from 0 to 1, so the volume of the solid given is:
1∫

0

1

2
π

(
ex

2

)2

dx =
π

8

1∫
0

exdx =
π

8
(e − 1) ≈ .675
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It’s worth making it into a mantra: “Find volumes by integrating areas for the length of the
solid.” �

The Length of a Plane Curve

Often times lines, especially those modeling particle movement in a 2−dimensional plane,
are expressed using parametric functions. Therefore, it is helpful to know how to find the
length of parametric line segments. It is possible to derive the formula from the arc length
formula for rectangular coordinates, but this is a challenge. One thing that can make it
easier is to assume that the path is strictly increasing on the x-axis, which eliminates an
absolute value when factoring outside of the denominator. The formula is:

Parametric arc length: A(t) =
β∫
α

√(
dx
dt

)2
+
(

dy
dt

)2
dt

Something students are likely to recognize is that very few functions work very well for the
rectangular arc length formula. The combination of taking a derivative, squaring it, adding
a term and then taking the integral of the square root of that function rarely results in
an easy, if even possible integral to take. Many of these problems will need to have the
definite integral approximated by a computer solver, or by using Simpson’s rule. I must
admit to the reader that I spent many hours searching past notes and texts to find an even
remotely interesting parametric function that is a possible integral, and none came up. The
easiest integral is finding the circumference, or part of the circumference, of a circle using
the parameters x = sin(t), y = cos(t), 0 ≤ t ≤ c where c is arbitrary, a c of 2π gives a
complete circle. But this can be computed without the arc length formula, and it’s not
terribly exciting. Here are some fun ones to try if using a computer based solver, largely
because they make cool pictures: Find the length of the figure described by the parametric
equations:

x = cos(3t), y = sin(5t), 0 ≤ t ≤ 2π
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When using a computer solver, the key is to make sure that the derivatives are taken correctly,
and that the input syntax is correct.

2π∫
0

√
(−3 sin(3t))2 + (5 cos(5t))2dt ≈ 24.6

Find the length of the line described by the parametric equations

x = t + sin(2t), y = cos(t), 0 ≤ + ≤ 2π
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2π∫
0

√
(1 + 2 cos(2y))2 + (− sin(t))2dt ≈ 10.8

Area of a Surface of Revolution
Newton’s Law of Cooling states that the rate of temperature change is equal to the heat
transfer coefficient times the surface area times the difference in temperatures. Stated in
variables:

dQ

dt
= hA(Te − To)

Since often times in engineering the temperature of the object and environment is fixed, as
well as the material, the surface area is the one thing that can be changed to affect the
dissipation of heat. If we are designing a heat sink out of aluminum that needs to dissipate
at least 200 joules of heat from a device running at 373K in a 298K environment. The
heat transfer coefficient of aluminum in air is 25W/m2K. The shape of the heatsink is the
surface made by revolving the function x3 about the x axis from the origin. Determine the
length along the x−axis needed to dissipate the required energy.
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Here, we need to substitute all the information we have into the Law of Cooling function.
This is a little different than normal, as we are not asking to compute the area of the surface,
but need to state where the limits of integration are to get the proper area needed to conform
to the requirements. Because the integral is going to take up some serious space, we should
first solve for the total minimum area.

−207 = 25A(298 − 373) → A = .1104m2

Now setting the integral equal to this quantity, but leaving the variable we need to solve for
in the upper limit:

.1104 =

L∫
0

2πx3
√

1 + 9x4dx → .1104 =
2π

36

(
2

3
(1 + 9x4

) 3
2 ∣∣L

0

.9488 = (1 + 9(L)4) − 1 → L = .5698

This tells us we need to have extend the surface to at least .5689m in length to get the
required properties.�

Applications from Physics, Engineering and Statistics
These problems are really illustrative of how calculus was developed and the questions that
drove the techniques and theorae learned thus far. Problems that have natural or applied
motivation often do not work as “cleanly” as the types of packaged problems typically pre-
sented in textbooks for practice. There are a few tools that are helpful in navigating these
problems.

• Always keep track of vectored quantities. While it is sometimes a bit of extra work
to make sure all the signs are set up in the correct manner, one nice result of doing
careful work up front is that the answer falls with the correct sign with only doing the
correct math.

• When it doubt, write all the units, all the time. Sometimes the units illustrate the next
step and can keep you going when stuck. For example: finding quantities like work
involves multiplying two other quantities. If you have force as a function of distance,
then the product of the two is area, indicating that an integral is called for.

• Use significant space for work. Some problems or formulae may use odd numbers or
expressions that can be confusing if they are crammed into a small space. I am thinking
specifically about the standard normal distribution, which has a complex exponent that
is easy to get mixed up.

• Draw a picture. Always. The quality of a picture, as well as the labeling of quantities
is imperative for keeping track of necessary information, and how the quantities relate.
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1.6 Transcendental Functions

Inverse Functions
A problem that is worth thinking about as a useful tool, as well as a foreshadowing of future
ideas, is how to work around the one-to-one restriction. There are times when an inverse is
needed, even though the function is not one-to-one, and there may be some restrictions that
can be applied to make it happen. For instance: what is the inverse function f(x) = x2?
The lesson in the text illustrates clearly that it is not a one-to-one function. The instructions
for finding an inverse function state to solve for the dependent variable, which states that
the inverse function is ±

√
x, which is really not a function at all, with two outputs for every

input. If we take only the positive part, then we can call it a function. Now it’s important
to understand that this isn’t a complete inverse, but is more of a functional inverse. There
are many instances which the negative values are not needed, like in many physical problems
involving time, distance or other quantities that can’t logically have negative values.

Another key consideration is what domain restrictions need to be made. Here, the range
becomes the domain, which needs to be explicitly stated as many functions will not have a
range of all reals. For the case of our example, the domain of the inverse is all non-negative
real numbers.

Inverse functions can introduce many technical problems. They should always be treated
with careful attention, as the problems are often not immediately apparent. �

Differentiation and Integration of Logarithmic and Exponen-
tial Functions
Here it can be entertaining to take a number of different looks at e. The common definition
is the one listed in the text: limn→∞

(
1 + 1

n

)n. There are a couple of different ways to find
this quantity, some of which make good problems for students.

If a person makes a $1 investment in a bank that pays 100% interest per year, how much is
in the bank at the end of the year? If the interest in compounded at two points in the year,
how much is in the bank? How about if the interest is compounded quarterly? Monthly?
Daily? Every second? What is the maximum amount that can be in the bank at the end of
the year.

The only thing to remember here is the compound interest formula: A = p
(
1 + r

t

)yt where
p is the principle amount, r is the periodic rate, y is the number of periods, and t is the
number of times per period the interest is compounded. By plugging in the information for
each question, it should become clear that the amount is a sequence approaching 2.71828,
with the final question resembling the limit expressed above.

Another, seemingly unrelated, way to find the number is with a classic gambling question.
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If there is a slot machine that hits every 1 out of n times, and a person plays the machine
n times. What is the probability the player does not win anything if n = 10?n = 100?n =
1, 000, 000?n goes to ∞?

If students have not had a course in probability and statistics, they may not be familiar with
how to find this probability. Since the outcomes are either win or lose, this is a binomial
probability:

(
n
k

)
pk(1−p)n−k where n is the number of trials, k is the number of successes, and

p is the probability of success. Plugging in the first question looks like:
(
10
0

) (
1
10

)0 (
1 − 1

10

)10
=

1 × 1 × 910

1010 ≈ .3487. Skipping the rest, the last is: limn→∞
(

n
0

) (
1 − 1

n

)n
= limn→∞

(
1 − 1

n

)n
which looks an awful lot like the limit for e. In fact, this is equal to e−1. �

Exponential Growth and Decay
The first time students see the separation of variables it can cause some confusion. Leibniz
introduced the differential notation that we use specifically for the purposes of treating the
individual parts of the differentials like they are variables. To understand why separable
problems work, it may be useful to look at the justification for the general solution method.

Assume a differential equation can be written as dy
dx

= p(x)q(y), q(y)��=0. Letting a new
function r(y) = 1

q(y)
then the differential equation can be rewritten as dy

dx
= p(x)

p(y)
. Multiply-

ing both sides by r(y) yields r(y) dy
dx

= p(x). Now integrate both sides with respect to x:∫
r(y) dy

dx
dx =

∫
p(x)dx. Which means

∫
r(y)dy =

∫
p(x)dx will give the solution when the

integrals are taken. Notice that it sure looks like we are cross multiplying when the inter-
mediate steps are not considered, but it is not exactly the case. Some students may think
of it that way, which isn’t a bad too to remember what to do to find a solution, but there
are some things that aren’t helped by thinking of it that way. Note that the original isn’t
a fraction on both sides, so that it is not a necessity for separable equations. For instance:
dy
dx

= xy2 cos(y2) is a separable equation. Sometimes it is helpful to rewrite the right hand
side as a fraction to keep the process consistent. �

Derivatives and Integrals Involving Trigonometric Functions
Using the stranger of the trig integrals is one of the toughest integration techniques. It is
not unlike the challenge faced when trying to remember the integral of

∫
1
u
du = lnu. The

process of integration is beginning to get drilled in, students know that they should convert
denominators to negative exponents in the numerator if possible and then apply the reverse-
power rule to find the anti-derivative. The problem is this process will not work for special
trig integrals and log integrals. Furthermore, there are few clues that can help the student
along. For example:∫

x
1+x2 is solvable by substitution but

∫
x2+2x
1+x2 dx can’t, and the anti-derivative that gives an

answer of arctan will need to be used. There will be other problems where using the method
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of partial fractions works for a rational expression, and other where completing the square
and using a trig substitution works, and the problems look nearly identical. Here is my
recommendation for attempting to solve these problems.

• Go ahead and try the u-substitution or the easier method. Still a large majority of the
problems students are going to encounter use the basic integration techniques. One
small problem is that you want students to feel confident with their work so they can
tell the difference between reaching a dead end and just being stuck, or having made
a mistake. Still, no reason to try to out-think the problem and go straight to the trig
integral.

• If there is no other variable outside the denominator, or outside the radical in the
denominator, then it is likely to be a trig antiderivative. For example:

∫
x√

1−x2 dx does
not have a trig antiderivative, but

∫
x√

1−x2 dx does. That extra variable makes the
chain rule part of substitution possible.

• Have visual reminders up for students for a long period of time. Students need to see the
form of the trig antiderivatives frequently to help commit them to memory. Problems
may not always be presented in exactly the form that has a known antiderivative, so
recognizing problems that are close to the form, and then using algebra to make it
work, is dependent on having those forms committed to memory.

L’Hopitals Rule
Why does l’Hopital’s rule work? It possibly seems odd to be able to take a derivative of a
part of a function to help find a limit. Students are likely apt to accept the rule without
reason as it makes a number of challenging limits much easier to compute. l’Hopitals rule is
a result of local linearity of functions.

lim
x→n

f(x)

g(x)
= lim

x→n

f(x)
x−n

g(x)
x−n

=
f ′(x)

g′(x)
= lim

x→n

f ′(x)

g′(x)

Some places will present that reasoning as proof, but it is not really proof. The actual
proof of the rule comes from examining each of the indeterminate forms individually and
then applying the mean value theorem. This short piece of reasoning is, however, a good
examination of what is going on with the local linearity. Put in English, if we were to examine
the lines tangent to each individual curve at the place where the limit is to be taken, then
the ratio of slopes is going to be a good approximation of the ratio of the original functions.
This is most clearly illustrated in the zero over zero indeterminate form.
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1.7 Integration Techniques

Integration by Substitution
There are a couple of tricky substitutions that are not intuitive. Here are some examples:

∫ √
2 −

√
xdx

The normal course of action is to make the expression inside of the radical equal to our new
variable. This is the correct way to start but students may halt when they see the result:

u = 2 −
√

x du =
1

2
√

x
dx

Which they will see as being useless to substitute back into the original integral. The trick
here is to solve for x before taking the derivative:

√
x = 2 − u → x = (2 − u)2 → dx = −2(2 − u)du

Now we use the equation for x and dx to substitute back into our original integral:

∫ √
2 −

√
(2 − u)2(−4 + 2u)du =

∫ √
u(−4 + 2u)du =

∫
−4u

1
2 + 2u

3
2 du =

−2√
u

+ 3
√

u + c

And finally substituting x back in:

−2√
2 −

√
x

+ 3

√
2 −

√
x + c

Another problem where we can apply the same “trick” is the, at first, innocent looking
problem:

∫
x2 + 4

x + 2
dx
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Normally the rule of thumb is to make the denominator equal to u, but in this case, that
will not allow us to substitute out all of the x variables in the problem. To do so, we will
need to again get x in terms of u.

x + 2 = u x = u − 2 dx = du

∫
(u − 2)2 + 4

u
du =

∫
u2 − 4u + 8

u
du =

∫
u − 4 +

8

u
du =

1

2
u2 − 4u + 8 ln u + c

− 1

2
(x + 2)2 − 4(x + 2) + 8(x + 2) + c

Integration by Parts

Typically the average person’s experience has income arriving in discreet groupings, for
example bi-monthly or monthly paychecks from employers. It is not the same for larger
businesses, which owing to their size and the amount of their transactions think of income
coming more as a stream. Businesses will often model the income with a function to help in
making future projections. Since the income is often deposited into interest earning accounts,
the value of a company can’t be strictly computed just by how much money they are taking
in currently. Economists will look at Present and Future values to determine the value of
investments considering the “Time Preference” of money being worth more in-hand today
than the same amount in the future. The Present and Future Values functions for businesses
with income streams are:

Present Value:Vp =
T∫
0

S(t)e−rtdt Future Value: V_f =
T∫
0

S(t)er(T−t)dt

Where S(t) is the income stream as a function of time, T is the number of time periods
(months, years) of evaluation and r is the interest rate.

Find the present and future values for a seasonal sporting goods manufacturer who’s income
stream is modeled by the function S(t) = −250 cos(π

6
t)+625, where t is expressed in months

and S(t) is in thousands of dollars. The interest earned .35% every month, and the term of
the projection is 5 years.

This problem is presented as an application that requires parts to solve. Many times the
income stream is expressed as a constant or linear function, which may not require parts,
but the multiplication of the exponential is frequently going to. I’ll compute the Present
Value here:
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Vp =

60∫
0

(−250 cos
(π

6

)
+ 625)e−0.035tdt =

60∫
0

−250 cos
(π

6
t
)

e−0.035t + 625e−0.035tdt

The integral can be split, and the first term will require parts with

u = e−.0035tdv = cos
(π

6
t
)

dt → du = −.0035e−.0035tdtv =
6

π
sin
(π

6
t
)

−250

60∫
0

cos
(π

6
t
)

e−.0035tdt =
6

π
sin
(π

6
t
)

e−.0035t + .0035
6

π

60∫
0

sin
(π

6
t
)

e−.0035tdt

Parts again with:

u = e0.035tdv = sin
(π

6
t
)

dt → du = −.0035te.0035tdtv = − 6

π
cos
(π

6
t
)

−250

60∫
0

cos
(π

6
t
)

e−.0035tdt

=
6

π
sin
(π

6
t
)

e−.0035t + .0035
6

π

−6

π
cos
(π

6
t
)

e−.0035t − .0035
6

π

60∫
0

cos
(π

6
t
)

e−.0035tdt


Distributing the numbers removes the parenthesis and allows us to “wrap around” the inte-
gral:

.0035
−36

π2
cos
(π

6
t
)

e−.0035t − .00004468

60∫
0

cos
(π

6
t
)

e−.0035tdt

−249.999955

60∫
0

cos
(π

6
t
)

e−.0035tdt =
6

π
sin
(π

6
t
)

e−.0035t + .0035
−36

π2
cos
(π

6
t
)

e−.0035t

Finishing up:

Vp =
250

249.999955
(
6

π
sin
(π

6
t
)

e−.0035t + .0035
−36

π2
cos
(π

6
t
)

e−.0035t
∣∣60
0

≈ 33823.60

Very number intensive. The key here is record keeping, but the math is the same as simpler
parts problems. The future value function works very much the same way. �
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Integration by Partial Fractions
What if there is an irreducible quadratic term in the denominator after factoring? For
example:

∫
10x + 2

x3 − 5x2 + x − 5
dx =

∫
10x + 2

(x2 + 1)(x − 5)
dx

This is still a partial fractions problem. If there is an irreducible factor that is a quadratic in
the denominator, then the numerator needs to be a linear term. In this case, the separation
by partial fractions looks like:

10x + 2

(x2 + 1)(x − 5)
=

Ax + b

x2 + 1
+

c

x − 5

Once the problem is set up correctly, it is solved in the same manner as all other partial
fractions problems.

10x + 2

(x2 + 1)(x − 5)
=

(Ax + B)(x − 5)

(x2 + 1)(x − 5)
+

C(x2 + 1)

(x2 + 1)(x − 5)

After finding common denominators set the numerators equal

10x + 2 = Ax2 + Bx − 5Ax − 5B + Cx2 + C

Gather and factor terms with variables with the same power

0x2 + 10x + 2 = (A + C)x2 + (−5A + B)x + (−5B + C)

Then set the coefficients of each variable equal on both sides of the equation

0 = A + C 10 = −5A + B 2 = −5B + C

When solving 3 variable systems and above, I nearly always use matrices on the calculator,
as I make fewer mistakes than I do with substitution. Typical mistakes with substitution are
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going to be centered around distributing coefficients, especially negatives, correctly. After
finding the value of each variable, plug those numbers back into original separation and
integrate.

∫
−2x

x2 + 1
+

2

x − 5
dx = −ln(x2 + 1) + 2ln(x − 5) + c

It should be pointed out that a major place of confusion for students is in the difference
between A

(x+1)

2 and Bx+c
x2+1

. The former is a repeated linear factor and the latter is a irreducible
quadratic factor, and they must be treated differently. The technique listed above can also
be extended for larger degree irreducible factors.

Trigonometric Integrals
There are a couple of ways to solve a particular integral which will illustrate good practices
with trig identities and integration.

Solve
∫
sin(x) cos(x)dx three different ways.

It is possible that students can brainstorm the different ways, but it is also a good activity
to assign different groups the methods of solution.

Method 1: Substitution

This is the most straightforward method.

u = sin(x) → du = cos(x)dx∫
udu =

1

2
u2 + c =

1

2
sin2(x) + c

Method 2: Integration by Parts

Since these are two functions that are multiplied, it makes sense to use parts:

u = sin(x) du = cos(x)dx dv = cos(x)dx v = sin(x)∫
sin(x) cos(x)dx = sin2(x) −

∫
sin(x) cos(x)dx

2

∫
sin(x) cos(x)dx = sin2(x) + c∫
sin(x) cos(x)dx =

1

2
sin2(x) + c
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Method 3: Trig identities

The identities needed here are the double angle identities:sin(2x) = 2 sin(x) cos(x), cos(2x) =
cos2(x) − sin2(x) .

∫
sin(x) cos(x)dx =

1

2

∫
sin(2x)dx

=
−1

4
cos(2x) + c

=
−1

4
(cos2(x) − sin2(x)) + c

=
−1

4
(1 − sin2(x) − sin2(x)) + c

=
−1

4
(1 − 2 sin2(x)) + c

=
−1

4
+

1

2
sin(x) + c

=
1

2
sin(x) + c

The last example illustrates the importance of always including the constant added term,
and remembering that any constant can be rolled into it, since it is not determined. �

Trig Substitution
The best problems in mathematics are often the ones that can be solved using different
methods. There is something that captures my imagination about the truth and totality
of the major theorems, like those presented by Euclid, that can be proven by straightedge
and compass, and then thousands of years later with Galois groups. This is not nearly on
the level of such classical problems, but it is valuable and entertaining for students to have
the opportunity to verify facts using different methods. Especially those methods that may
seem like they were dreamed up for the entertainment of torturing math students.

Here, we will examine the integral:
∫

1
1−x2 dx. If you ask the class without prompting, some

may believe it looks like many of the problems they have just been working and that they
should use a trig substitution. They would be correct. Others may recognize that the
denominator can be factored as a difference of two squares, which allows the fraction to be
separated using partial fractions. They are also correct. The class should show that the two
methods give the same solution. This can be done either by asking every student to choose
their preferred method, grouping students to work together with their preferred method,
assigning a method or having everyone to work both methods on their own.
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Partial Fractions:

1

(1 + x)(1 − x)
=

A

1 + x
+

B

1 − x
→ 1 = A − Ax + B + Bx → 0 = −A + B 1 = A + B

1

2

∫
1

1 + x
dx +

1

2

∫
1

1 − x
dx =

1

2
ln(1 + x) − 1

2
ln(1 − x) + c

Trig Sub:

This does not fit the substitution for sin exactly, but the subtraction indicates that the sine
substitution is the one we need.

x = sinϕ dx = cosϕdϕ →
∫ cosϕ

1 − sin2 ϕ
dϕ =

∫ cosϕ
cos2 ϕ

dϕ =

∫
secϕdϕ

The unique method for taking this integral is outlined in the previous chapter’s example 5:

∫
secϕdϕ =

∫ sec2 ϕ + secϕ tanϕ

secϕ + tanϕ
dϕ

u = secϕ + tanϕ du = sec2 ϕ + secϕ tanϕ∫
1

u
du = lnu + c = ln(secϕ + tanϕ) + c = ln

(
1

cosϕ +
sinϕ

cosϕ

)
+ c = ln

(
1 + sinϕ

cosϕ

)
+ c

Using the rules of logs, then substituting back in x using trig identities, we can find the same
answer as above:

ln(1 + sinϕ) − ln(cosϕ) + c = ln(1 + x) − ln((1 − x2)
1
2 ) + c

= ln(1 + x) − 1

2
ln((1 + x)(1 − x)) + c

= ln(1 + x) − 1

2
ln(1 + x) − 1

2
ln(1 − x) + c

=
1

2
ln(1 + x) − 1

2
ln(1 − x) + c

Improper Integrals
Coulomb’s Law is an equation that gives the electrostatic force between two charged particles.
The scalar form of Coulomb’s Law is:
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F = k
q1q2

r2

where Coulomb’s constant, k = 8.9876× 109 Nm2

C2 , q1, q2 are the individual magnitudes of the
two charges and r is the distance between the two charges. This can be used to describe the
force of attraction between a proton and an electron. In chemistry, ions have the ability to
“take” electrons away from atoms. We can ask here, How much energy does it take to strip
an electron from a hydrogen atom?

Reference sources state that the charge of both a proton and an electron is 1.6 × 10−19C,
and the distance can be assumed to be the Bohr radius: 5.3 × 10−11m. Astute students
may recognize that Coulomb’s Law provides the force between the charges, not the energy
required to move them, which would be expressed in joules, or the force times the distance
traveled. Now, as the charges are spread apart, that also affects Coulomb’s Law, as the force
will get weaker, therefore it is not a simple multiplication. Hopefully students will recognize
that in order to find a quantity as a product of a changing function over an interval they will
need to integrate. One last problem, how far away do we need to take this electron to “strip”
it away? To be safe, let’s take it infinitely far away from the proton. Now the integral looks
like this:

E =

∞∫
5.3×10−11

(8.9876 × 109)
(1.6 × 10−19)2

r2
dr

I placed all of the quantities in, but it will probably be easier to integrate using constant
variables rather than using all of the very large, or very small numbers involved. The only
thing to be careful of is to remember what is a constant, and what is the variable. Also,
notice that this is an improper integral, so we will need to express it as a limit:

E = kq1q2 lim
n→∞

n∫
B

1

r2
dr = kq1q2 lim

n→∞

(
−1

n
− −1

B

)

Now we can see that as n approaches infinity, that term goes to zero, so the integral does
converge. Substituting in the quantities left out:

E =
(8.9876 × 109)(1.6 × 10−19)2

5.3 × 10−11
≈ 4.34 × 10−8
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We do expect the integral to converge. As the distance between the particles advances to
infinity, the force becomes minimal, and with the squared term in the denominator, this is
a classic converging integral. �

Ordinary Differential Equations
A common application of differential equation is fluid mixing problems. Given information
of about the rate of increase or decrease of both the concentration and the fluid being mixed
in sets up as a fairly common separable equation. Example:

A pond near a cement plant has been found to have a concentration hexavalent chromium
((CrV I) of .72ppm. The volume of the pond is 1.17×109m3, and there is a creek that carries
contaminated water out that flows at a rate of 3 cubic meters per second. Assuming fresh
water with no contaminants is replaced in the pond, and all contaminants mix completely,
how long will it take for the pond to return to the EPA specified limit of .1ppm of CrV I?

We need to find the rate at which the chromium leaves the lake. Since the amount that leaves
at any single time will depend on the current concentration, the rate that the contaminant
leaves will be equal to the rate of water leaving times the concentration of the contaminant.
Or put in variables:
dC
dt

= −rC
V

Which is a separable differential equation:

1

C
dC =

−r

V
dt → lnC =

−r

V
t + C0 → C = C0e

−rt
v

This will allow us to calculate the time needed after putting in the initial condition C0.
To deal with more realistic time units, convert the flow rate of the creek to 7776000 cubic
meters per month. The since we can consider the current reading to be time zero, the initial
conditions are:

.72 = C0e
−7776000×0

1.17×109 → .72 = C0

Solving then for the time:

.1 = .72e
−7776000×0

1.17×109 → .1389 = e−.0065t → ln(.1389) = −.0065t → 303.69 = t

Therefore the pond will be back down to safe levels in just over 303 months, or 25 years. �
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1.8 Infinite Series

Sequences
Zeno of Elea was a Greek philosopher who’s most famous for the paradoxes that have been
attributed to his name. While Zeno proposed his paradoxes to support, or discredit, various
philosophical viewpoints, the paradox is frequently “solved” with a little bit of analysis.

The most famous of Zeno’s Paradoxes is about Achilles and the Tortoise. Taken from Aris-
totle: “In a race the quickest runner can never overtake the slowest, since the pursuer must
first reach the point whence the pursued started, so that the slower must always hold a lead.”
Put in numerical terms, if the tortoise has a 80 meter lead, Achilles must first endeavor to
make up that deficit. But by the time Achilles makes it to 80 meters, the half as fast tortoise
is now at 120 meters, covering 40 meters in the same time it took Achilles to travel 80. Now
Achilles must make it to the 120 meter mark, but when he gets there, the tortoise is now at
the 140 meter point. This continues on, making the point that Achilles will always be some
distance behind the tortoise.

This is very similar to another paradox about motion: “That which is in locomotion must
arrive at the half-way stage before it arrives at the goal.” This is the paradox that should be
looked at as a sequence. The paradox states that this makes it impossible to actually reach
a goal, as you must pass through the half way point, and then you are at a new location
yet to reach your new half way point and that the distance left is always going to be half
the distance you are currently away from the destination. For ease of work, lets say the goal
is 10m away. Make a list of the half way locations: {5, 2.5, 1.25, .625, .3125, . . .}which may
be better expressed as fractions of the original distance:

{
10
2
, 10

4
, 10

8
, 10

16
, . . .

}
. Now it should

become clear that we can express the sequence of locations with an expression: Sn = 10
2n

. If we want to know if we will ever get to the end, we need to know where this sequence
will end up, which is another way of saying, what is the limit of this sequence. We can see
that limn→∞

10
2n = 0. This means that even though by taking half of each quantity, this is a

sequence that gets to zero in an effective way.

There are many other paradoxes, some with more mathematical involvement than others,
that can be fun to consider. It is also a fun exercise to try to create new ones, or modify
those from Zeno to new situations. �

Infinite Series
Sometimes some interesting accounting techniques can provide the opportunity for banks to
lend more money out then they strictly have possession of. If we assume that only 8%of the
amount deposited is in use, the rest remain in the account, then the bank is free to loan out
the other 92%. If the bank then assumes that the cash they loan out will be coming back
in the form of income deposited by another party, they can then lend 92% of that quantity
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and so on. If we try a model with the first deposit being $1000, what is the total amount of
money that is deposited back into the bank?

This is an infinite series question, as 92% of the previous deposit is never going to be exactly
0, and we are adding the amount each time. Listing out some partial sums may give us some
insight to the correct way to write the summation.

S0 = 1000

S1 = 1000 + 1000(.92) = 1920

S2 = 1000 + 1000(.92) + 920(.92) = 2766.4

S3 = 1000 + 1000(.92) + 920(.92) + 846.4(.92) = 3545.09

I nearly always start out with writing out partial sums if I was not supplied the summation
by the problem. The process of writing out the sums, and finding the answers, often gives
me clues, such as each term being able to be written as 1000 times some multiple of .92:

S0 = 1000(.92)0

S1 = 1000(.92)0 + 1000(.92) = 1920

S2 = 1000(.92)0 + 1000(.92) + 920(.92)2 = 2766.4

S3 = 1000(.92)0 + 1000(.92) + 920(.92)2 + 846.4(.92)3 = 3545.09

Now I have a clear idea that the summation will be:

n∑
i=0

1000(.92)t

Which is a geometric series that converges.

n∑
i=0

1000(.92)i−1 =
1000

1 − .92
= 12500

Taking that quantity and dividing by the original deposit is a quantity called the credit
multiplier. Many different fields in the study of economics look at multipliers as a method
of analysis or comparison.

Series Without Negative Terms
The text omits the proof that the harmonic series is a divergent series, but it is not out of the
scope of capability for a first year student to accomplish. The harmonic series is interesting
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to look at because it can trick you at first with how slowly it grows. A good question to ask
students to get a feel for the rate of growth is to find how many terms in the partial sum to
get to 10? To 50? To 100? (And please don’t do the latter two by hand... it will take a very
long time! Use a computer or calculator to help.) Also, as the next chapter will illustrate,
the alternating harmonic series does converge. Therefore, it may not seem obvious that the
harmonic series diverges.

One way, and probably the most obvious way, to prove divergence is with the integral test.
The function 1

x
is clearly decreasing and the starting value is greater than 0 so:

∞∫
1

1

x
dx = lim

b→∞

∞∫
1

1

x
dx = lim

b→∞
ln(x)

∣∣b
1

= lim
b→∞

ln(b)

Which is divergent.

Another, slightly more elementary and crafty method, is the one that is briefly outlined
in the text. It is a process like the comparison test, but the comparison test requires the
inequality to hold term by term. Here we are going to group a set of terms to compare to a
series that is divergent. If we list out the first 20 terms of the sequence:

1 +
1

2
+

1

3
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16
+

1

17
+

1

18
+

1

19
+

1

20
+

We can group the terms such that each group will be greater than 1
2
.

[1] +

[
1

2

]
+

[
1

3
+

1

4

]
+

[
1

5
+

1

6
+

1

7
+

1

8

]
+

[
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

]
+
[ 1

17
+

1

18
+

1

19
+

1

20
+ . . .

Since there will be infinitely many groupings, we find that this sequence will be larger than
an infinite sum of 1

2
, which is clearly divergent. �

Series With Odd or Even Negative Terms
The methods of having alternating signs in the terms of a series introduces some puzzles
for writing series in summation notation. As is clear from the text, the way of writing an
alternating sign is to have a factor of −1to an exponent. While this is clear enough, another
consideration must be the index, as a series:

1 − 1

2
+

1

3
− 1

4
− . . .
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Will not be written the same way as the series:

−1 +
1

2
− 1

3
+

1

4
− . . .

Therefore, some tricky work must be done with the indexing. Often times there will be
numbers added or subtracted to the indexing of the summation, the exponent or anywhere
else to get signs and numbers to agree. In the case of the above series, each are an alternating
harmonic series, so we know we will start out with:

∞∑
i=1

(−1)7 1

i

In the first case, the first term is positive, so we need the exponent to be even for the first
term. Therefore we need to add one. No such addition is needed for the second series, as
the negatives work with the regular indexing.

Other interesting places to get tripped up include use of all even, or all odd numbers. For
instance, how would you write the series of all even numbers added with alternating signs,
where the first term is positive? Writing even sequences is a little trick that many students
learn and become comfortable with around the first year of calculus. The same way that
the trick to alternating signs is the exponent being odd or even, the trick to getting all even
numbers is to multiply by 2. Odd numbers will be handled by multiplying by 2 and then
adding or subtracting one depending on what the starting value needs to be. Therefore our
series ask above is:

∞∑
i=1

(−1)i+1(2i)

It is a good challenge for students to try to think up series that skip terms, alternate signs
and other tricks that may require a bit of puzzle solving to write out. �

Ratio Test, Root Test and Summary of Tests
An added challenge for students can using some of the techniques of calculus to not only
determine convergence, but find the sum of the series.

∞∑
i=2

1

i3 − i
=
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The first thing to do is to show that this series converges. This is easily done by the
comparison test, which is nearly always my first attempt, especially for expressions with
polynomials in the denominator. Here we can compare it to 1

x2 which is easy to show
convergence with the integral test.

Now finding the value of the sum is a little bit tricky. This is a nice application of the method
of partial fractions outside of integrals, as wel will need to split up that denominator to find
a solution.]

1

i3 − i
=

1

i(i − 1)(i + 1)
=

A

i
+

B

i − 1
+

C

i + 1

1 = A(i − 1)(i + 1) + Bi(i + 1) + C(i − 1) = (A + B + C)t2 + (B − C)i − A

A + B + C = 0 B − C = 0 −A = 1

Substituting in and then splitting up the summation:

∞∑
i=2

−1

i
+

∞∑
i=2

1

2(i − 1)
+

∞∑
i=2

1

(2 + i)

Now we can change the index of each to eliminate the terms in the denominator.

−
∞∑
i=2

1

i
+

1

2

∞∑
i=1

1

i
+

1

2

∞∑
i=3

1

i

We need one more change of index now to get compare the sums. By taking the first two
terms from the middle sum and the first term from the first sum we can start each of them
at an index of 3:

−1

2
−

∞∑
i=3

1

i
+

1

2
× 1 +

1

2
× 1

2
+

1

2

∞∑
i=3

1

i
+

1

2

∞∑
i=3

1

i

The summations all cancel, adding to zero, so the sum is equal to the evaluation of the
constants = 1

4
.

Power Series
Finding ways to approximate functions with power series is a tough task for students. Here
is some additional reinforcement with another standard problem.
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Find the power series representation for the function f(x) = ln(x + 1) with center zero.

There are two tricks here. First of all we want to try to convert to a series at some point and
usually the easiest way is to use a geometric series. Also, a common trick to get logarithms
into the form of a geometric series is to use the derivative. This gives a fraction that can be
manipulated into the correct form:

f ′(x) =
1

1 − (−x)
dx = (−x)0 + (−x)1 + (−x)2 + (−x)3 + . . .

Integrate both sides:

∫
f ′(x)dx =

∫
1 − x + x2 − x3 + . . . dx

ln(x + 1) = x − x2

2
+

x3

3
− x4

4
+ . . . =

∞∑
n=0

(−1)nxn

n

Checking for the radius of convergence:

an =
(−1)nxn

n
→
∣∣∣∣(−1)n+1xn+1

n + 1
× n

(−1)n+1xn

∣∣∣∣ =

∣∣∣∣ −xn

n + 1

∣∣∣∣
So taking the limit:

lim
n→∞

∣∣∣∣ −n

n + 1
× x

∣∣∣∣ = |x|

Therefore the radius of convergence is |x| < 1.

Taylor and MacLaurin Series
John Machin was a 17th century mathematician who is probably most famous for developing
a formula for to approximate pi:

π

4
= 4tan−1

(
1

5

)
− tan−1

(
1

239

)
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We can examine why this was important with the following questions. Remember, the
whole advantage of Taylor series is that it allows nearly any function to be calculated as a
polynomial. This has two implications; first, this is how computers and calculators compute
transcendental functions. Second, if you do not have a caculator, or you are attempting to
find a value that is previously unknown so it does not appear in a table, the first number of
terms in a taylor sum will allow you to find that value.

First we need to find the taylor sum for tan−x(x). Here we are going to take a roundabout
approach. The first thing to do is to look at the binomial expansion for the function:

(1 + u)−1 = 1 − u + u2 − u3 + u4 − . . .

Substituting u = x2:

(1 + x2)−1 = 1 − x2 + x4 − x6 + x8 − . . .

Now you should recognize that this function is the derivative of tan−x(x) . We can then
integrate both sides to get the taylor series:

tan−1(x) = x − x3

3
+

x5

5
− x7

7
+

x9

9
− . . .

A student may ask how we knew to take the binomial expansion of that particular function.
There is no really good answer, as all the time mathematicians are asserting that something
is true, and then proving it later, seemingly picking ideas out of thin air. In fact, we will
make a doozy of an assumption later. Sometimes guess and check can tell us where we need
to go. Here, we are taking a function and that is close to some form of our original function.

Now the temptation is to say that since tan−1(1) = π
4
, why not use this expansion to calculate

pi? You can, and it will converge to the correct number, but the 3rd decimal place is correct
after 1000 terms. If you notice Machin’s formula uses fractions that when put into the taylor
sum, it converges very quickly. In fact, you only need about 5 or 6 terms to get a very
accurate approximation for pi.

But we still need to show that Machin’s formula is correct. We will start by making the
assertion that:

tan−1

(
120

119

)
− tan−1

(
1

239

)
= tan−1(1)
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To show that this is the case, use the angle sum formula for tangent:

tan(A + B) =
tan(A) + tan(B)

1 − tan(A)tan(B)

If you use angle A = tan−1
(

120
119

)
and B = tan−1

( −1
239

)
the assertion above is proven. All

that is required is a little bit of arithmetic as all of the tangent and tangent inverses cancel
each other.

Much the same way, we now need to show:

4tan−1

(
1

5

)
= tan−1

(
120

119

)

This is easiest to show in two steps. First show:

2tan−1

(
1

5

)
= tan−1

(
5

12

)

Again by using the angle addition rule withA = B = tan−1
(

1
5

)
Then show that:

2tan−1

(
5

12

)
= tan−1

(
120

119

)

With the same arithmetic techniques for a third time with A = B = tan−1
(

5
12

)
It should all come together now substituting back to the top. It is also useful to remember
that negatives inside of a tangent become negatives outside due to symmetry. It is common
for students to believe that taylor series are antiquated, made obsolete by the calculator. As
it actually stands, someone has to program all of those functions into the calculator, and
the most common technique is to use the equivalent taylor series. Our calculators would
not know how to take the tangent of an angle otherwise. This is an elegant way to compute
many digits of pi without extreme computer power.
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